
Ethereum Studio Docs

Obsidian Labs

Feb 14, 2022

GETTING STARTED

1 Overview 1

2 Installation 3
2.1 Download . 3
2.2 Install Dependencies . 3
2.3 Contrast with Web Client . 6

3 QuickStart 11
3.1 Login web client . 11
3.2 Create an ERC20 project . 11
3.3 Connect to MetaMask Account . 13
3.4 Request Ropsten Faucet . 15
3.5 Build Contracts . 17
3.6 Deploy Contracts . 18
3.7 Check Balance and Transfer . 20

4 Project 23
4.1 Create Project . 23
4.2 Open Project . 31
4.3 Local Projects and Cloud Projects . 32
4.4 Delete Project . 33

5 Editor 35
5.1 Build . 35
5.2 Deploy . 39
5.3 Project Settings . 47
5.4 Tool Bar . 52

6 Network 57
6.1 Local Development . 57
6.2 Remote . 65

7 Block Explorer 73
7.1 Account . 73
7.2 Information . 74
7.3 Transactions . 74
7.4 Transfer . 75
7.5 Faucet . 76

8 Contract 79
8.1 Write Functions . 80

i

8.2 View Functions . 83
8.3 Events . 84

9 Keypair Manager 85
9.1 Create Keypair . 86
9.2 Check Keypair . 89
9.3 Delete Keypair . 89
9.4 Import Keypair . 90

10 RPC Client 93

11 Supported Faucets 95
11.1 Ropsten Faucet . 95
11.2 Rinkeby Faucet . 95
11.3 Goerli Faucet . 95
11.4 Kovan Faucet . 96

12 Supported Frameworks 97
12.1 Open Zeppelin . 97
12.2 Hardhat . 97
12.3 Truffle . 97
12.4 Waffle . 98

13 Supported Testnets 99
13.1 Ropsten . 99
13.2 Rinkeby . 99
13.3 Goerli . 99
13.4 Kovan . 99

14 Transaction History 101
14.1 Transaction Detail . 101

15 Truffle Migration Script 103

16 ABI Storage 105

ii

CHAPTER

ONE

OVERVIEW

The Ethereum Studio is a world-class Ethereum smart contract and DApp integrated development environment (IDE),
aiming to make Ethereum development faster and easier. Ethereum Studio currently offers a standalone desktop appli-
cation running on macOS, Windows and Linux, and Ethereum Studio Web that runs in modern web browsers. With
Ethereum Studio, you can:

• Set and save a project in the cloud or local quickly

• Manage keypair information with MetaMask easily

• Build and test smart contracts with different framework

• Deploy smart contracts to Ethereum mainnet and testnet

• Check and call deployed contract functions through the address

• Query address information with Explorer on the selected network

• Setting local RPC node, ABI Storage and other advanced features

1

Ethereum Studio Docs

display

When deploying contracts, you should use the latest released Docker image version. Apart from exceptional cases,
only the latest version receives security fixes. Furthermore, breaking changes as well as new features are introduced
regularly. We currently use a 0.y.z version number to indicate this fast pace of change.

Ideas for improving Ethereum Studio or this documentation are always welcome. Read our contributors guide for
more details.

2 Chapter 1. Overview

CHAPTER

TWO

INSTALLATION

2.1 Download

Download Ethereum Studio installation package in Github Ethereum Studio Latest Release according to the computer
system type (.dmg for macOS, .AppImage for Linux, .exe for Windows).

2.2 Install Dependencies

Starting Ethereum Studio requires several image dependencies, including Docker, Ethereum Node and Ethereum Truf-
fle. Running Ethereum Studio desktop client requires all three image files. The modules are installed in Docker client
like this:

Install image files through the “Welcome” page, if there is any missing dependency in Docker. Select the available
versions in the “Geth in Docker” list. It is the same for “Truffle in Docker”, too.

3

https://github.com/ObsidianLabs/EthereumStudio/releases

Ethereum Studio Docs

Click the “Get Started” button, and “Project” interface will pop up, after all the required dependencies are installed.

4 Chapter 2. Installation

Ethereum Studio Docs

2.2.1 Docker

Docker is used to start the Ethereum Node and build projects in Ethereum Studio. If Docker is not installed yet, users
can click the “Install Docker” button to visit the official Docker website and download and install it.

Docker can not wake up automatically through the Ethereum Studio desktop client now. Open Docker desktop client
before starting the the Ethereum Studio desktop client. Otherwise, an error report would remind “Docker has not been
installed”.

2.2.2 Geth

Geth in Docker is the Ethereum node image. Ethereum Studio uses the image to run the Ethereum node and build
projects. Install the Geth image through the “Install” button and select the required version. The latest version is
always recommended as the beginner’s default version.

2.2. Install Dependencies 5

https://www.docker.com/
https://github.com/ethereum/go-ethereum

Ethereum Studio Docs

2.2.3 Truffle

Truffle in Docker is an Ethereum version of Truffle used to create and build projects. Install the Truffle image through
the “Install” button and select the required version. The latest version is always recommended as the beginner’s default
version.

The grey “Skip” button will change into a violet “Get Started” button after all dependencies are correctly installed.
Click it to enter the main interface of Ethereum Studio.

2.3 Contrast with Web Client

2.3.1 Create a New Project

Creating an ERC20 project in the Ethereum Studio Desktop client is a bit different, compared with creating
it in web client. The “Project name” is “testTransfer” and the “Project location” is automatically settled as
“C:\Users\Administrator\Ethereum Studio\testTransfer” in the Windows system. The “Project location” must be an
empty documentation. The web client will save projects in the cloud automatically.

6 Chapter 2. Installation

https://github.com/trufflesuite/truffle

Ethereum Studio Docs

In the Ethereum Studio desktop client, set “Template” as “Basics - ERC20, ERC721 & ERC 1155” or Truffle framework
“Metacoin” to save time importing basic projects in the later development process. While in the web client, there are
only three types to choose from – “Empty Project”, “Coin”, and “ERC20 Token”. The “Open Zeppelin Version” is the
latest version automatically.

2.3. Contrast with Web Client 7

Ethereum Studio Docs

Select one of the three different frameworks as the development environment in the Ethereum Studio desktop client.
The frameworks are “Truffle”, “Hardhat”, “Waffle”, and “Dockerized Truffle”. Besides, there are also three types of
“Npm client”, which are “npm”, “yarn”, and “cnpm” that will not show in the web client.

Those frameworks and tools will be used automatically in the command line when building or deploying projects. The
default framework version is settled during the install process of Docker, and it will be introduced later.

2.3.2 Build contracts

In the Ethereum Studio desktop client, build a Solidity file through “Right Click”, the file name. In contrast, in the web
client, clicking the “hammer” icon is the only way to build.

8 Chapter 2. Installation

Ethereum Studio Docs

2.3.3 Keypair Manager with MetaMask

The Ethereum Studio web client will wake up the extension of MetaMask automatically in browser. After logging in to
the MetaMask account, the Block Explorer will link to the account. Check the detailed information about it. Remember
to import the mnemonic in the Keypair Manager to use it in the later paying gas fee in deploying.

Import a MetaMask account through mnemonic in Keypair Manager in the Ethereum Studio desktop client since the
browser extension is invalid in the desktop client.

2.3.4 Development and Custom Network

Select “Network” as “Development” to set a local instance in the Ethereum Studio desktop client while the web client
has no local network.

2.3. Contrast with Web Client 9

Ethereum Studio Docs

10 Chapter 2. Installation

CHAPTER

THREE

QUICKSTART

3.1 Login web client

Click the “Login” icon on the bottom of “not logged in”. Otherwise, click the upper right corner and click the “Login”
on the panel.

Users login through their Github accounts, in the Ethereum Studio. Once logged, users log again through Github
information automatically. The Ethereum Studio will not keep users’ accounts information.

3.2 Create an ERC20 project

After login, create a new project by clicking the green button with “New”.

11

Ethereum Studio Docs

Create an ERC20 project in Ethereum Studio. Set “Project” as “tokenTransfer” and “Template” as “ERC20 Token”.
The project will be automatically saved in Ethereum Studio’s cloud under one’s account. Then click the purple button
at the bottom left corner to create.

After the project is created, the ERC20 contracts have been generated successfully.

12 Chapter 3. QuickStart

Ethereum Studio Docs

3.3 Connect to MetaMask Account

A MetaMask wallet pop up in the web client to login through users’ passwords. Suppose a user does not have a
MetaMask account. Please refer to the MetaMask register introduction.

3.3. Connect to MetaMask Account 13

https://metamask.zendesk.com/hc/en-us

Ethereum Studio Docs

After linking to the MetaMask, copy the mnemonic into the Keypair Manager for later deploying contracts. Click the
purple key icon on the bottom left corner and then click the “Import” button and paste the mnemonic words, 12 English
Words representing the private key. Finally, give this imported private key a name, and the Etereum Studio will save it
under this account in the cloud.

14 Chapter 3. QuickStart

Ethereum Studio Docs

3.4 Request Ropsten Faucet

After choosing the “Network” and “Explorer”, click the upper right “Faucet” icon and get the request page of testETH
on the testnet. Choose “Ropsten” testnet and click the icon to turn to the request page.

Click the upper right “Faucet” icon, and the page will jump to the Ropsten Faucet. One can copy the wallet address in
MetaMask and paste it into the box. Then clicks the button “Send me test Ether” and wait for a few minutes.

With all the requests finished, there will be 5 testETH in the wallet address on Ropsten test network.

3.4. Request Ropsten Faucet 15

Ethereum Studio Docs

Back to the web client, check the balance if there is 5 testETH on the test network, Ropsten.

16 Chapter 3. QuickStart

Ethereum Studio Docs

3.5 Build Contracts

There is three Solidity files in the “ERC20/contracts/” file in the left panel after successfully creating the project. Select
one of the contract and click the “Hammer” icon to build the contract.

Now this IDE only supports building all contracts together. Single-file compilation will come soon in the later version.

3.5. Build Contracts 17

Ethereum Studio Docs

3.6 Deploy Contracts

After a successful building, deploy the ERC20 contract on the Ropsten testnet. Select the JSON file “ERC20.json”.

Then set “name_” as “test”, “symbol_” as “TEST” and totalSupply as “3000000000”.

18 Chapter 3. QuickStart

Ethereum Studio Docs

Select the signer as the keypair saved in Keypair Manager. If there is no choice, please check the chapter Keypair
Manager.

Set the “Tip” as desired amount, or generate it with “Gas Limit” and “Max Fee” together by clicking the bottom right
button to “Estimate”. There will be the estimated fee in real-time. If the fee is not reasonable, click the “Re-estimate”
or wait for a non-congestion period.

3.6. Deploy Contracts 19

Ethereum Studio Docs

After deploying successfully, a window with detailed transaction information will pop up. Now the contract has been
deployed at the address: 0xF30438E789b361Eca03B3C7AB8cB176e436C7259. Click the address to turn to the “Con-
tract” interface.

3.7 Check Balance and Transfer

Since 5 test ETH is far enough for paying fees, choose the “transfer” function from the purple inverted triangle icon.
Select the “recipient” as the target address and set the token amount to transfer as 1000. Click the purple “Estimate”
button to set “Parameters” and “Gas” automatically.

20 Chapter 3. QuickStart

Ethereum Studio Docs

After all the parameters are settled, click the triangle icon beside “transfer” to execute a function.

After the compeletion of “PUSHING” state, the contract is deployed successfully with the “CONFIRMED” state. Select
“Explorer” on the upper right panel to see the past transaction detail.

3.7. Check Balance and Transfer 21

Ethereum Studio Docs

After transferring the 1000 “TEST” token, click the upper right “Explorer” to see the left balance of 4.997 test ETH
now. The balance consumed by the “Gas Fee” and “Tip” will not be 5 testETH for deploying and calling a contract.

Here is the most simple quickstart example of the Ethereum Studio. Please feel free to ask us any questions through
Github issue link.

22 Chapter 3. QuickStart

https://github.com/ObsidianLabs/EthereumStudio/issues/new

CHAPTER

FOUR

PROJECT

Developers can create a new project, open projects and check all the local and remote projects in the upper left corner
“Project” panel.

4.1 Create Project

Click “Create Project” and create a new project in either local or cloud under account. The created projects will show
in both desktop and web clients in real-time. Creating a project and editing it can be done solely in the Ethereum Studio
without other development tools like Visual Studio Code.

In “Create a New Project” panel, developers input the “Project name”, while the “Project location” will be automatically
generated a document path following “C:\Users\Administrator\Ethereum Studio” in Windows.

23

Ethereum Studio Docs

Developers can change the path to any other documents. Click the “Choose” button on the left of the default path, and
one will see all documents in the whole computer and choose another existing document or create a new document as
the new project location. Be careful that the new project location must be an empty file.

24 Chapter 4. Project

Ethereum Studio Docs

4.1.1 Frameworks

Developers can choose 4 different frameworks: Truffle, Hardhat, Waffle and Dockerized Truffle. The detail information
about those frameworks can be checked in “Supported Frameworks” under “Reference” of this doucument.

4.1.2 Template

In “Template”, there are several different templates including “Empty”, “Coin”, “ERC20”, “Basic” and “Metacoin”.

In “Empty Project” template, there is a default empty project with contracts “Main.sol”. The only “Main.sol” contract
has no content. This template is a minimum viable product to build smart contracts from scratch.

4.1. Create Project 25

Ethereum Studio Docs

In “Coin” template, there is a default empty project with contracts “Coin.sol”. This template is a primary contract with
variables and functions that could help developers build coin-related contracts. Please remember that a definition of
coin functions creates this contract and it does not follow any ERC standards.

26 Chapter 4. Project

Ethereum Studio Docs

In “ERC20 token” template, there is an ERC20 standard token project including “ERC20.sol”. The “ERC20.sol”
contract has all functions the ERC20 standard required. There are also “IERC20” interface. Using the interface would
reduce work of setting parameters and provide reliable third-party essential functions for developers to call. This
template and generates ERC20 standard related contracts and interfaces locally.

4.1. Create Project 27

Ethereum Studio Docs

In “Basics - ERC20, ERC721 & ERC1155(v3.1+)” template, there are three ERC standard contracts including “GLDTo-
ken.sol”, “GameItem.sol” and “GameItems.sol”. Those three smart contracts inherited ERC20, ERC721 and ERC1155
standards respectively. All three projects import ERC standards through Open Zeppelin and realized only construc-
tor function with basic parameters. Developers can use those smart contracts to understand how the ERC20 tokens
and ERC721 and ERC1155 NFTs are minted. The “Basic OpenZeppline Template” will use interfaces online and
developers only need to import ERC standard contracts through code.

28 Chapter 4. Project

Ethereum Studio Docs

In “Metacoin” template, there is a default framework “Dockerized Truffle” including “ConvertLib.sol”, “MetaCoin.sol”
and “Migrations.sol”. In this project, developers choose “Dockerized Truffle” since ???

4.1. Create Project 29

Ethereum Studio Docs

4.1.3 npm Clients

npm(Node Package Manager) stems from when npm first was created as a package manager for Node.js. All npm
packages are defined in files called package.json. The content of package.json must be written in JSON. At least two
fields must be present in the definition file: name and version.

cnpm is faster than npm in China, because Taobao first requests the contents of foreign servers to its own domestic
servers, so when we use cnpm, the download depends on downloading from domestic servers, which is much faster. It
has a complete image of npmjs.org. At present, the synchronization frequency is once every 10 minutes to ensure that
it is synchronized with the official service as much as possible.

yarn offers offline mode. If developers have installed a package before, developers can install it again without any
Internet connection. Yarn has a lock file that records the exact version number of the installed module. Each time a
file is added, yarn will create (or update) the yarn.lock file to ensure that the module version is the same each time the
dependency is installed. Yarn reduce the different versions of dependent packages to a single version to avoid creating
multiple copies.

30 Chapter 4. Project

Ethereum Studio Docs

4.2 Open Project

Click “Open Project”, one can check the location of the current project or open an existed project in the system.

4.2. Open Project 31

Ethereum Studio Docs

4.3 Local Projects and Cloud Projects

In the “Local Projects” and “Remote Projects” of the “File” panel, the user can see all the projects in local computer
and cloud under one’s account. Developers can quickly switch to another project through panel that is helpful for
muti-project developers.

32 Chapter 4. Project

Ethereum Studio Docs

4.4 Delete Project

Right click the name of any project in the panel, developers can chose “Remove” and the project is deleted immediately.
Be careful since the deleted project can not be restored from “Trash Can” on the desktop.

4.4. Delete Project 33

Ethereum Studio Docs

34 Chapter 4. Project

CHAPTER

FIVE

EDITOR

5.1 Build

After test and develop, developers needs to build smart contracts.

5.1.1 Build Preparation

When an existed project is opened, the Ethereum Studio can automatically detect the solidity version written at the
head of contracts. Developers can select the specific version of the solidity compiler by clicking the “hammer” icon at
the bottom right corner with “Solc(0.x.y)”.

35

Ethereum Studio Docs

5.1.2 Build by Panel

In the desktop client, developers can click the “hammer” icon below the “Project” panel or right-click the target file
and select “Compile” to build the contract. Now the Ethereum Studio only supports building all contracts together, and
the single file building will be released later.

Developers can find differences between web and desktop clients on building a project. The detail explanation can be
checked in Chapter Install Desktop Client, Contrast with Web Client.

36 Chapter 5. Editor

Ethereum Studio Docs

5.1.3 Build by Command Line

Developers can build contracts manually by opening the command line, clicking the “Terminal” icon and inputting the
command through “Project” panel. Please note that the command must be corresponding to the selected framework
during creating process. Developers can check the framework type in “package.json” with the commands following
“scripts”.

5.1. Build 37

Ethereum Studio Docs

5.1.4 Check Building Details

After building successfully, the framework will build a new document named “build” containing a “contracts” docu-
ment. In “contracts” document, there are all the JSON files generated in the building process. Each JSON file has the
corresponding application binary interface(ABI). Developers will deploy ABI files on the network later.

38 Chapter 5. Editor

Ethereum Studio Docs

5.2 Deploy

After building process, developers can deploy target contracts with generated ABI files.

5.2.1 Deploy by Panel

Developers can right-click the file name of an contract and select “Deploy”, and there will popup a “Deploy Contract”
window. By other means, developers can click the “Docker” icon below the “Project” panel.

5.2. Deploy 39

Ethereum Studio Docs

40 Chapter 5. Editor

Ethereum Studio Docs

5.2.2 Deploy by Command Line

Developers can open the command line to deploy contracts manually by clicking the “Terminal” icon and input com-
mand through the “Project” panel. Please note that the commands must be corresponding to the selected framework
during project creating process. Developers can check the framework in “package.json” with commands following
“scripts”.

5.2.3 Deploy Preparation

There will be a “Deploy Contract” window in the preparation process. Developers can choose a JSON file to deploy
on the network in this window.

“Constructor Parameters” are corresponding to the constructor function parameters for users to input.

5.2. Deploy 41

Ethereum Studio Docs

Developers can choose “Signer”, the final payer of gas fee and tip for deploying this contract. Developers needs to
ensure the signer has enough ETH on the target network. Otherwise, the later “Estimate & Deploy” process will not
be successful.

42 Chapter 5. Editor

Ethereum Studio Docs

The “Estimate & Deploy” button locates at the bottom right corner. There will be a real-time estimation of “Gas Limit”,
“Tip”, and “Max Fee” located below. It will be significantly different for the estimation time and price. Developers
should carefully check the network gas fee before deploying.

5.2. Deploy 43

Ethereum Studio Docs

After estimating process, there are exact price numbers in each box. If developers feel the gas fee price is too high or the
network is too busy, click the green “Re-estimate” button at the bottom left corner to estimate cost again. If developers
supposes the price is fair, click the purple “Deploy” button on the bottom right corner to deploy the contract.

44 Chapter 5. Editor

Ethereum Studio Docs

5.2.4 Check Deploy Transactions

After clicking “Deploy”, developers can check deploy schedule by clicking the bottom “Transactions” button to review
any transaction. Developers can check detailed information with the popup “Deploy a Contract” window.

5.2. Deploy 45

Ethereum Studio Docs

Five boxes show detailed information in the “Deploy a Contract” window. In the “Basic” panel, there are several most
crucial pieces of information of deployment, including address. Developers can click on the “Contract” address, and
the “Contract” panel will show the contract functions for developers to call.

46 Chapter 5. Editor

Ethereum Studio Docs

5.3 Project Settings

At the right end of the toolbar, there is a “gear” icon named “Project Settings”. Click the icon, and there will be the
“Project Settings” panel in the editor. This panel is a graphic show of the “config.json” file. Developers can easily
change settings in the project.

5.3. Project Settings 47

Ethereum Studio Docs

5.3.1 General

In the “General” part, the “Main file” is the default selection of deploying file.

Developers can switch the framework here and then use a new framework to build or deploy with more detailed con-
figuration in “package.json”.

Developers can change clients here and use a new client like yarn or cnpm. Please make sure that developers has
installed the clients and runs directly in the command line.

48 Chapter 5. Editor

Ethereum Studio Docs

5.3.2 Compilers

Developers can select the Truffle version while the default version is settled during the creating process. The
“Solc(0.x.y)” version is identical to the pragma version in the head of solidity file. Developers can change the EVM
version and Optimizer directly. The Ethereum Studio disabled Optimizer???

5.3. Project Settings 49

Ethereum Studio Docs

5.3.3 Linter

Linters analyze code for possible programmatic and styling errors automatically. In “Project Settings”, there are Solhint
and Ethlint. Developers can choose a familiar lint to complete codes.

50 Chapter 5. Editor

Ethereum Studio Docs

5.3.4 Editor

In “Editor”, developers can choose a font-related configuration to make code more specific and direct as desired.

5.3. Project Settings 51

Ethereum Studio Docs

5.4 Tool Bar

Between “Project” panel and fill tree, tool bar has several quick functions for developers.

52 Chapter 5. Editor

Ethereum Studio Docs

5.4.1 New File

Clicking “plus” icon named “New File”, developers can create a new file in the current path. Developers can define
both name and type of the new file in the input box. Then, click the purple “Create” button and the new file will be
generated successfully.

5.4. Tool Bar 53

Ethereum Studio Docs

5.4.2 Build

Developers can build all the contracts together quickly by clicking the “hammer” icon. The detail information for
buidling can be checked in “Build” section above.

5.4.3 Deploy

Developers can deploy the contract by clicking the “docker” icon. The detail information for buidling can be checked
in “Deploy” section above.

54 Chapter 5. Editor

Ethereum Studio Docs

5.4.4 Script

Click the “code” icon and select “build” or “deploy” in “Script”. Then there would be corresponding command line in
“script” part of “package.json” inputted in the terminal and excuted automatically.

5.4.5 Project Settings

Click the “code” icon and select “build” or “deploy” in “Script”. Then there would be corresponding command line in
“script” part of “package.json” inputted in the terminal and excuted automatically.

5.4. Tool Bar 55

Ethereum Studio Docs

56 Chapter 5. Editor

CHAPTER

SIX

NETWORK

6.1 Local Development

Developers may want to run a smart contract on a local network to see how it works before deploying. In Ethereum
Studio, developers can create a local blockchain instance to test smart contracts inside the IDE. This local network
provides much faster develop iteration than a public testnet(for instance, you don’t need to require test ETH from a
testnet faucet).

6.1.1 Geth

6.1.2 Geth Version Manager

Click “Geth Version Manager” to set a specific version. Before first time launch of Ethereum Studio, developers had
installed the Docker image of Geth, so there is a default version.

57

Ethereum Studio Docs

Developers can install a Geth version different to the default version.

58 Chapter 6. Network

Ethereum Studio Docs

Geth is installed through Docker image. Developers has to start Docker before installing.

6.1. Local Development 59

Ethereum Studio Docs

After Geth installed, developers can check Geth version in “Geth Version Manager”. There will be a blue number icon
beside the “Geth Version Manager” button indicating how many versions are in the manager.

If developers want to remove the installed Geth, double-click the “trash can” icon. After the first click, the “trash can”
icon will turn red, and developers can click it again to delete this Geth.

60 Chapter 6. Network

Ethereum Studio Docs

6.1.3 New Instance

Click “New Instance” and a “New Instance (dev)” window will popup.

6.1. Local Development 61

Ethereum Studio Docs

Developers can set “Instance name” in the window and change Geth version if there are different versions of Geth.
Besides, developers can set “Miner” as the target account. Then click the “Create” button on the bottom right to make
an instance.

62 Chapter 6. Network

Ethereum Studio Docs

After a new instance with target Geth version created, the instance will list on the panel. Click “Start” to run the
development network. Developers can create an etheruem network and connect to it locally. This local ethereum
network provides default 50 ETH for user.

6.1. Local Development 63

Ethereum Studio Docs

6.1.4 Node Panel

Click the green “Start” button on the Geth instance will start it. With information running on the node panel, the
development network is prepared for developers to deploy a contract instantly. This local node cost only local ETH
while users already have 50 since node running, so it is easy to test smart contracts on the private network.

64 Chapter 6. Network

Ethereum Studio Docs

6.2 Remote

6.2.1 Mainnet

A mainnet is an independent blockchain running its network with its technology and protocol. It is a live blockchain
where its cryptocurrencies or tokens are in use, compared to a testnet or projects running on top of other popular
networks such as Ethereum.

Ethereum Mainnet is the primary public Ethereum production blockchain, where actual-value transactions occur on
the distributed ledger. Ethereum mainnet uses real ETH as currency to transfer assets and pay gas fees and tips. There
are many different Ethereum testnets, and each testnet uses its own test ETH as currency, respectively. Developers may
deploy and test contracts on at least one testnet before the final release on the mainnet.

6.2.2 Testnets

In addition to Mainnet, there are public testnets. These networks are used by protocol developers or smart contract
developers to test both protocol upgrades and potential smart contracts in a production-like environment before de-
ployment to Mainnet.

It’s generally essential to test all smart contracts code on a testnet before deploying it to the Mainnet. Suppose developers
building a dapp that integrates with existing smart contracts. In that case, most projects have copies deployed to testnets
that you can interact with it.

Most testnets use a proof-of-authority consensus mechanism. This means a small number of nodes are chosen to
validate transactions and create new blocks – staking their identity in the process. It’s hard to incentivize mining on a

6.2. Remote 65

Ethereum Studio Docs

proof-of-work testnet which can leave it vulnerable.

Ropsten is a proof-of-work testnet for those running Geth, Besu and all other Ethereum clients. This means it’s the best
like-for-like representation of Ethereum. Ropsten started in November 2016 and it can be used with all clients.

Rinkeby is a proof-of-authority(clique) testnet for those running Geth, Besu, Nethermind, and OpenEthereum client.
Rinkeby started in April 2017 and is immune to spam attacks(as Trusted parties control ether supply).

Goerli is a proof-of-authority testnet that works across clients. Goerli started in November 2018. Goerli doesn’t fully
reproduce the current production environment as it uses PoA.

Kovan is a proof-of-authority testnet for those running OpenEthereum clients. Kovan started in March 2017 and is
immune to spam attacks. Kovan doesn’t fully reproduce the current production environment as it uses PoA.

6.2.3 Custom Network

In the Ethereum network, there are private networks and public networks. The Ethereum Studio can set “Custom
Network” to connect the target network. Connecting to a network, developers can join the network of other nodes instead
of establishing a network by oneself. Especially, developers can use a company’s network service like Infura Link(https:
//infura.io/docs).

66 Chapter 6. Network

https://infura.io/docs
https://infura.io/docs

Ethereum Studio Docs

New Connection

In the “Custom Network” panel, click the “gear” icon, and there will popup a window named “Custom Network”.

Click the “New Connection” button, and there will jump out a window for developers to add more network connections.
Since each connection represents a node from one of the public or private networks, there will usually be a lot of different
connections for developers to connect.

6.2. Remote 67

Ethereum Studio Docs

In the “New Custom Network Connection” window, developers can input the name and URL of node RPC. In this
picture, there is a node of Ropsten network from Infura. Infura is a Web3 backend and Infrastructure-as-a-Service (IaaS)
provider that offers blockchain developers a range of services and tools. Developers can use Infura as a fundamental
infrastructure of Ethereum projects. Besides, developers can join other Geth nodes with the node parameters.

68 Chapter 6. Network

Ethereum Studio Docs

After clicking “Check Network,” a “Network info” will be added below the original panel. The panel shows detailed
network information to be joined with “URL of node RPC”. Developers can check the information and join the network
by clicking the “Add Network” button.

6.2. Remote 69

Ethereum Studio Docs

After adding a network, click the green “Connect” button, and there will be a “Blocks” panel showing the “Block
Number”, “Block Time”, and “Difficulty” in real-time.

70 Chapter 6. Network

Ethereum Studio Docs

6.2. Remote 71

Ethereum Studio Docs

72 Chapter 6. Network

CHAPTER

SEVEN

BLOCK EXPLORER

7.1 Account

In the “Account” panel, there are “Balance” and “Nounce”. “Balance” represents the ETH amount of the developers.
The “Nounce” represents the transaction experience. Specifically, the nonce in the ETH wallet is a scalar value equal
to the number of transactions sent from this address or the number of contract creations made by this account. Nonce
can be changed manually.

73

Ethereum Studio Docs

7.2 Information

Input one of the contract address in the search box. After pressing down the “Enter” button on the keyboard, the detailed
information is shown on the “Information” panel. There is the “Code Hash” of the contract in the search box in the
picture.

7.3 Transactions

In the “Transactions” panel, there is specific information of each transaction on the address, including “Time”, “Block-
height”, “Transaction Hash”, “Owner Address”, “Receiver Address”, “Value” and so on.

Developers can check the colour of the transaction value to know the input or the output of ETH since the input is
green and the output is red. Besides, there is detail information of the receiver address reminding the action status.
Developers can click the link of address to show the address in Block Explorer to check the history information.

74 Chapter 7. Block Explorer

Ethereum Studio Docs

7.4 Transfer

On the right of the address search bar, the “arrow cycle” icon provides transfer function for developers send ETH
between address. Click it and a “Transfer” window will popup to let developers to input ETH amount and receiver
address for a quick token preparation between address.

7.4. Transfer 75

Ethereum Studio Docs

7.5 Faucet

There are currencies on the Ethereum network such as ETH and test ETH. Unlike ETH in the mainnet, test ETH has
no real value. Therefore, there are no markets for testnet ETH. Most people get testnet ETH from faucets. Faucets are
web apps where developers can input an address and the requested test ETH will be sent automatically.

First, choose one of the Ethereum testnets. Then set the account of Block Explorer. There is a “faucet” icon at the
right end of the address search bar. Click the icon and it will turn to the faucet page of the corresponding testnet. The
Ethereum Studio only supports faucets of Ropsten, Rinkeby and Kovan. Developers can check the Goerli faucet link
by oneself.

76 Chapter 7. Block Explorer

Ethereum Studio Docs

7.5.1 Ropsten Faucet

Click the “Faucet” icon and the page will jump to the Ropsten Faucet. Developers can copy the wallet address and
paste it into the box. Then developers clicks the button “Send me test Ether” and wait for a few minutes. There will be
several test ETH of Ropensten testnet on balance.

7.5.2 Rinkeby Faucet

Following faucet instruction via inputting specific Twitter or Facebook message links, developers can get test ETH on
Rinkeby. Developers can change the amount of test ETH with different lengths of time.

7.5.3 Kovan Faucet

???

7.5. Faucet 77

Ethereum Studio Docs

78 Chapter 7. Block Explorer

CHAPTER

EIGHT

CONTRACT

In “Contract” panel, there are three different panels from left to right including “Write Functions”, “View Functions”
and “Events” respectively. Developers can interact with “Write Functions”, mainly calling functions with assets and
check the address status with “View Functions”. Besides, developers can set parameters and check related events in
“Events”.

79

Ethereum Studio Docs

8.1 Write Functions

8.1.1 Parameters

In “Parameters”, developers mannually set function required parameters. Usually, there are owner, receiver, amount
and so on for different functions. Please remember the token unit here is “wei”.

8.1.2 Gas

If developers want to call functions, there would be some gas fee and tip required by the miner of blockchain nodes.
Especially when the network is congested, the gas fee can be very large, so developers should set a “Max Fee” in
case of an unexpectedly high cost. Developers can click the purple “Estimate” button to get the real-time gas price of
deploying contract on network. If developers supposes the price is not fair, they can click again or wait for a period and
the Ethereum Studio will show changed price.

80 Chapter 8. Contract

Ethereum Studio Docs

8.1.3 Authorization

In “Authorization”, developers can choose “Signer” to pay gas fee and tip.

8.1. Write Functions 81

Ethereum Studio Docs

8.1.4 Results

In “Results”, there are some direct results of the return value of functions. Developers check error or successful mes-
sages through results.

82 Chapter 8. Contract

Ethereum Studio Docs

8.2 View Functions

The middle pannel represents “View Functions” in deployed contracts. View functions ensure that they will not modify
the state. Most of time, developers can quickly check variable state by calling view functions. Yet view functions still
could receive variables and return newly created data structure and variables. So this pannel could help developers
check if they get wanted middle results.

8.2.1 Parameters

Some of view functions receive variables so they have “Parameters”. In “Parameters”, developers could switch variable
types between “hex” bytes or “utf8” uint as functions required. By excuting function, developers check and get desire
results without changing variables in contracts.

8.2.2 Results

There are two types of results, “Pretty” and “Raw”. In “Raw”, there are original return values of excuted view function.
Switching to “Pretty”, the return values has more detail information such as number and types of returnd value.

8.2. View Functions 83

Ethereum Studio Docs

8.3 Events

“Events” locates on the right pannel, where developers can choose and check detail information of events on the net-
work. The types of events are corresponding to events in contract. For example, in the deployed ERC20 contract, there
are “Approval” and “Transfer” events. Click the “Execute” triangle beside the “Approval” button, developers can check
the latest event with its block number in the settled range.

8.3.1 Parameters

In “Parameter”, developers set numbers to quickly check the range of events in a list. If developers do not set numbers,
the data range is the latest 100 by default.

8.3.2 Events Log

Detail information of required events will show on the “Events Log” with settled parameters and excuted events.

84 Chapter 8. Contract

CHAPTER

NINE

KEYPAIR MANAGER

Click the purple “key” icon in the bottom left of panel and developers can see the “Keypair Manager” window popup.

In “Keypair Manager” panel, there is a reminder showing that keypairs kept in the manager should not be used on
mainnet. For the convenience of development, the keypairs are all unencrypted, private keys will easily be checked by
anyone using a desktop client under the account. Since keypairs used on mainnet containing real ETH assets and private
keys, it is dangerous to lose ETH and assets if developers keep Ethereum mainnet keypairs in the keypair manager.

85

Ethereum Studio Docs

9.1 Create Keypair

Click the “Create” button on the bottom left corner. Developers can easily generate a random keypair for later deploy-
ment.

86 Chapter 9. Keypair Manager

Ethereum Studio Docs

In “Create Keypair” window, there will be a newly generated address and private key in “Keypair info”. The newly
created key pair has no name, and developers can input a desired name for it as long as the new name is not the same
as any other keypairs name. Otherwise, there would be an error message reminding the name has been used. Names
can be easily changed in “Keypair Manager” later.

The keypair will show its name rather than address string in the Block Explorer panel since names may contain a more
meaningful message for developers to recognize.

9.1. Create Keypair 87

Ethereum Studio Docs

In “Regenerate”, an inverted triangle shows that developers can either regenerate a private key or regenerate a
mnemonic. In the blockchain, mnemonic means a fixed-length number of words that mnemonic can generate to one
and only one private key for its user. Compared with private keys including random permutations of characters and
numbers, the mnemonic can be easily remembered by a user who wants to keep critical information in a meaningful
way.

If developers wants another keypair, they can click “Regenerate” and have a different private key or mnemonic with a
corresponding address. After generating keypair and name, developers click “Create” in the bottom right corner of the
panel and save this keypair in “Keypair Manager”.

88 Chapter 9. Keypair Manager

Ethereum Studio Docs

9.2 Check Keypair

In “Keypair Manager”, there is a list of keypairs showing names and adresses. Developers can quickly select whole
address by double clicking the address. If developers want to check private key of any keypair, they can move mouse
upon the address and there will be a “eye” icon showing on the right of address. Double click the icon and there will
be a window named “View Private Key” showing “Address” and “Private Key” of selected keypair.

9.3 Delete Keypair

After creating several keypairs, developers can delete the unwanted keypair by double-clicking the “trash can” icon at
the right end of the address of keypair. Please remember that the keypair deleted can not be restored unless one has
kept the keypair information before and import the keypair again mannually.

9.2. Check Keypair 89

Ethereum Studio Docs

9.4 Import Keypair

Except for creating or recreating a random key pair, developers can import an existed keypair by clicking the green
“Import” button on the bottom left. There will be an “Import Keypair” window after clicking. Developers can copy
the existed keypair information and paste it into the box. The corresponding address is automatically generated after
inputting the private key or mnemonic. A green “checkmark” will be at the end of the box, indicating a correct input
under rules. Then, click the “Import” button on the bottom right corner to import the keypair.

90 Chapter 9. Keypair Manager

Ethereum Studio Docs

9.4.1 Import MetaMask Mnemonic

In MetaMask, developers uses a mnemonic as a private key to enter the wallet. Developers can import the mnemonic of
MetaMask as a login MetaMask wallet from a newly installed browser extension of MetaMask. Developers can check
detail information in link.

9.4. Import Keypair 91

https://docs.metamask.io/guide/common-terms.html#words-are-hard

Ethereum Studio Docs

92 Chapter 9. Keypair Manager

CHAPTER

TEN

RPC CLIENT

93

Ethereum Studio Docs

94 Chapter 10. RPC Client

CHAPTER

ELEVEN

SUPPORTED FAUCETS

There are currencies on the Ethereum network such as ETH and test ETH. Unlike ETH in the mainnet, test ETH has
no real value. Therefore, there are no markets for testnet ETH. Most people get testnet ETH from faucets. Faucets are
web apps where developers can input an address and the requested test ETH will be sent automatically.

First, choose one of the Ethereum testnets. Then set the account of Block Explorer. There is a “faucet” icon at the
right end of the address search bar. Click the icon and it will turn to the faucet page of the corresponding testnet. The
Ethereum Studio only supports faucets of Ropsten, Rinkeby and Kovan. Developers can check the Goerli faucet link
by oneself.

11.1 Ropsten Faucet

Click the “Faucet” icon and the page will jump to the Ropsten Faucet. Developers can copy the wallet address and
paste it into the box. Then developers clicks the button “Send me test Ether” and wait for a few minutes. There will be
several test ETH of Ropensten testnet on balance.

• Ropsten Faucet 1

• Ropsten Faucet 2

• Ropsten Faucet 3

11.2 Rinkeby Faucet

Following faucet instruction via inputting specific Twitter or Facebook message links, developers can get test ETH on
Rinkeby. Developers can change the amount of test ETH with different lengths of time.

• Rinkeby Faucet 1

• Rinkeby Faucet 2

11.3 Goerli Faucet

Following faucet instruction via inputting specific Twitter or Facebook message links, developers can get test ETH on
Rinkeby. Developers can change the amount of test ETH with different lengths of time. This procedure is similar to
Rinkeby Faucet.

• Goerli Faucet 1

• Goerli Faucet 2

95

https://faucet.egorfine.com/
https://faucet.dimensions.network/
https://faucet.ropsten.be/
https://faucet.rinkeby.io/
https://faucets.chain.link/rinkeby
https://faucet.goerli.mudit.blog/
https://faucets.chain.link/goerli

Ethereum Studio Docs

11.4 Kovan Faucet

Click the link of “Kovan Faucet 1” and request test ETH as instruction.

• Kovan Faucet 1

• Kovan Faucet 2

96 Chapter 11. Supported Faucets

https://faucets.chain.link/kovan
https://gitter.im/kovan-testnet/faucet

CHAPTER

TWELVE

SUPPORTED FRAMEWORKS

12.1 Open Zeppelin

Open Zeppelin provides a complete suite of security products to build, manage, and inspect all aspects of software
development and operations for Ethereum projects.

In the Ethereum Studio, developers can import Open Zeppelin contracts through the template. Detail information about
Open Zeppelin can be checked in link.

12.2 Hardhat

Hardhat is a development environment to compile, deploy, test, and debug Ethereum software. It helps developers
manage and automate the recurring tasks inherent to the process of building smart contracts and dApps and quickly
introduces more functionality around this workflow. This framework means compiling, running and testing smart
contracts at the very core.

In the Ethereum Studio, developers can use Hardhat as a development framework. Developers can choose it during the
creation of projects. Developers can also use this framework during the development process by the command line in
the Ethereum Studio. Detail information about Hardhat can be checked in link.

12.3 Truffle

Truffle is a development environment, testing framework and asset pipeline for blockchains using the Ethereum Vir-
tual Machine (EVM). With Truffle, users get a built-in smart contract compilation, linking, deployment and binary
management. Truffle also has network management for deploying to any number of public & private networks.

In the Ethereum Studio, developers can use Hardhat as a development framework. Developers can choose it during the
creation of projects. Developers can also use this framework during the development process by the command line in
the Ethereum Studio. Detailed information about Hardhat can be checked in link.

Dockerized Truffle used only Truffle in Docker image without other dependencies like Node.js and Npm in local. The
other two Frameworks, Hardhat and Waffle, require Node.js and Npm.

97

https://docs.openzeppelin.com/openzeppelin/
https://hardhat.org/getting-started/
https://trufflesuite.com/docs/truffle/

Ethereum Studio Docs

12.4 Waffle

Waffle is a library for writing and testing smart contracts. Sweeter, simpler and faster than Truffle. In Waffle, “Simpler”
means minimalistic, few dependencies; “Sweeter” means nice syntax, easy to extend; “Faster” means to focus on the
speed of tests execution. Waffle uses a set of chai matches, and it can import contracts from npm modules easily. There
is also a fast compilation with native and dockerized solidity contracts. It provides fixtures that help write fast and
maintainable test suites.

In the Ethereum Studio, developers can use Waffle as a development framework. Developers choose Waffle during the
creation of projects. Developers can also use this framework during the development process by the command line in
the Ethereum Studio. Detailed information about Waffle can be checked in link.

98 Chapter 12. Supported Frameworks

https://ethereum-waffle.readthedocs.io/en/latest/

CHAPTER

THIRTEEN

SUPPORTED TESTNETS

Ethereum Mainnet is the primary public Ethereum production blockchain, where actual-value transactions occur on
the distributed ledger. There are many different Ethereum Testnets, and each testnet uses its own test ETH as currency,
respectively. It’s generally essential to test all smart contracts code on a testnet before deploying it to the Mainnet.

Most testnets use a proof-of-authority consensus mechanism. This means a small number of nodes are chosen to
validate transactions and create new blocks – staking their identity in the process. It’s hard to incentivize mining on a
proof-of-work testnet which can leave it vulnerable.

13.1 Ropsten

Ropsten is a proof-of-work testnet for those running Geth, Besu and all other Ethereum clients. This means it’s the best
like-for-like representation of Ethereum. Ropsten started in November 2016 and it can be used with all clients. Detail
information can be checked in link.

13.2 Rinkeby

Rinkeby is a proof-of-authority(clique) testnet for those running Geth, Besu, Nethermind, and OpenEthereum client.
Rinkeby started in April 2017 and is immune to spam attacks(as Trusted parties control ether supply). Detail informa-
tion can be checked in link.

13.3 Goerli

Goerli is a proof-of-authority testnet that works across clients. Goerli started in November 2018. Goerli doesn’t fully
reproduce the current production environment as it uses PoA. Detail information can be checked in link.

13.4 Kovan

Kovan is a proof-of-authority testnet for those running OpenEthereum clients. Kovan started in March 2017 and is
immune to spam attacks. Kovan doesn’t fully reproduce the current production environment as it uses PoA. Detail
information can be checked in link.

99

https://docs.etherscan.io/v/ropsten-etherscan
https://docs.etherscan.io/v/rinkeby-etherscan
https://docs.etherscan.io/v/goerli-etherscan/
https://docs.etherscan.io/v/kovan-etherscan

Ethereum Studio Docs

100 Chapter 13. Supported Testnets

CHAPTER

FOURTEEN

TRANSACTION HISTORY

14.1 Transaction Detail

After calling functions, developers can check the transaction status in the “Transaction” button at the bottom of IDE.
Click the function name, and there will be a popup “Call a Contract” window.

There is detailed information about the transaction in the “Call a Contract” window. In this window, the contract address
means where the function is called. There is other detailed information for developers to check in different panels.

101

Ethereum Studio Docs

102 Chapter 14. Transaction History

CHAPTER

FIFTEEN

TRUFFLE MIGRATION SCRIPT

103

Ethereum Studio Docs

104 Chapter 15. Truffle Migration Script

CHAPTER

SIXTEEN

ABI STORAGE

105

	Overview
	Installation
	Download
	Install Dependencies
	Docker
	Geth
	Truffle

	Contrast with Web Client
	Create a New Project
	Build contracts
	Keypair Manager with MetaMask
	Development and Custom Network

	QuickStart
	Login web client
	Create an ERC20 project
	Connect to MetaMask Account
	Request Ropsten Faucet
	Build Contracts
	Deploy Contracts
	Check Balance and Transfer

	Project
	Create Project
	Frameworks
	Template
	npm Clients

	Open Project
	Local Projects and Cloud Projects
	Delete Project

	Editor
	Build
	Build Preparation
	Build by Panel
	Build by Command Line
	Check Building Details

	Deploy
	Deploy by Panel
	Deploy by Command Line
	Deploy Preparation
	Check Deploy Transactions

	Project Settings
	General
	Compilers
	Linter
	Editor

	Tool Bar
	New File
	Build
	Deploy
	Script
	Project Settings

	Network
	Local Development
	Geth
	Geth Version Manager
	New Instance
	Node Panel

	Remote
	Mainnet
	Testnets
	Custom Network
	New Connection

	Block Explorer
	Account
	Information
	Transactions
	Transfer
	Faucet
	Ropsten Faucet
	Rinkeby Faucet
	Kovan Faucet

	Contract
	Write Functions
	Parameters
	Gas
	Authorization
	Results

	View Functions
	Parameters
	Results

	Events
	Parameters
	Events Log

	Keypair Manager
	Create Keypair
	Check Keypair
	Delete Keypair
	Import Keypair
	Import MetaMask Mnemonic

	RPC Client
	Supported Faucets
	Ropsten Faucet
	Rinkeby Faucet
	Goerli Faucet
	Kovan Faucet

	Supported Frameworks
	Open Zeppelin
	Hardhat
	Truffle
	Waffle

	Supported Testnets
	Ropsten
	Rinkeby
	Goerli
	Kovan

	Transaction History
	Transaction Detail

	Truffle Migration Script
	ABI Storage

