

Welcome to Ethereum Studio documentation!

Getting Started

	Overview

	Installation
	Download

	Install Dependencies

	Contrast with Web Client

	QuickStart
	Login web client

	Create an ERC20 project

	Connect to MetaMask Account

	Request Ropsten Faucet

	Build Contracts

	Deploy Contracts

	Check Balance and Transfer

User Guidance

	Project
	Create Project

	Open Project

	Local Projects and Cloud Projects

	Delete Project

	Editor
	Build

	Deploy

	Project Settings

	Tool Bar

	Network
	Local Development

	Remote

	Block Explorer
	Account

	Information

	Transactions

	Transfer

	Faucet

	Contract
	Write Functions

	View Functions

	Events

	Keypair Manager
	Create Keypair

	Check Keypair

	Delete Keypair

	Import Keypair

Reference

	RPC Client

	Supported Faucets
	Ropsten Faucet

	Rinkeby Faucet

	Goerli Faucet

	Kovan Faucet

	Supported Frameworks
	Open Zeppelin

	Hardhat

	Truffle

	Waffle

	Supported Testnets
	Ropsten

	Rinkeby

	Goerli

	Kovan

	Transaction History
	Transaction Detail

	Truffle Migration Script

	ABI Storage

Overview

The Ethereum Studio is a world-class Ethereum smart contract and DApp integrated development environment (IDE), aiming to make Ethereum development faster and easier. Ethereum Studio currently offers a standalone desktop application running on macOS, Windows and Linux, and Ethereum Studio Web that runs in modern web browsers. With Ethereum Studio, you can:

	Set and save a project in the cloud or local quickly

	Manage keypair information with MetaMask easily

	Build and test smart contracts with different framework

	Deploy smart contracts to Ethereum mainnet and testnet

	Check and call deployed contract functions through the address

	Query address information with Explorer on the selected network

	Setting local RPC node, ABI Storage and other advanced features

！！！此处要改图片为display
[image: intro-1]

When deploying contracts, you should use the latest released Docker image version. Apart from exceptional cases, only the latest version receives security fixes. Furthermore, breaking changes as well as new features are introduced regularly. We currently use a 0.y.z version number to indicate this fast pace of change.

Ideas for improving Ethereum Studio or this documentation are always welcome. Read our contributors guide for more details.

Installation

Download

Download Ethereum Studio installation package in Github Ethereum Studio Latest Release [https://github.com/ObsidianLabs/EthereumStudio/releases] according to the computer system type (.dmg for macOS, .AppImage for Linux, .exe for Windows).

Install Dependencies

Starting Ethereum Studio requires several image dependencies, including Docker, Ethereum Node and Ethereum Truffle. Running Ethereum Studio desktop client requires all three image files. The modules are installed in Docker client like this:

[image: Bs-1]

Install image files through the “Welcome” page, if there is any missing dependency in Docker. Select the available versions in the “Geth in Docker” list. It is the same for “Truffle in Docker”, too.

[image: Bs-2]

Click the “Get Started” button, and “Project” interface will pop up, after all the required dependencies are installed.

[image: Bs-3]

Docker

Docker [https://www.docker.com/] is used to start the Ethereum Node and build projects in Ethereum Studio. If Docker is not installed yet, users can click the “Install Docker” button to visit the official Docker website and download and install it.

Docker can not wake up automatically through the Ethereum Studio desktop client now. Open Docker desktop client before starting the the Ethereum Studio desktop client. Otherwise, an error report would remind “Docker has not been installed”.

Geth

Geth in Docker [https://github.com/ethereum/go-ethereum] is the Ethereum node image. Ethereum Studio uses the image to run the Ethereum node and build projects. Install the Geth image through the “Install” button and select the required version. The latest version is always recommended as the beginner’s default version.

Truffle

Truffle in Docker [https://github.com/trufflesuite/truffle] is an Ethereum version of Truffle used to create and build projects. Install the Truffle image through the “Install” button and select the required version. The latest version is always recommended as the beginner’s default version.

The grey “Skip” button will change into a violet “Get Started” button after all dependencies are correctly installed. Click it to enter the main interface of Ethereum Studio.

Contrast with Web Client

[image: intro-2]

Create a New Project

Creating an ERC20 project in the Ethereum Studio Desktop client is a bit different, compared with creating it in web client. The “Project name” is “testTransfer” and the “Project location” is automatically settled as “C:\Users\Administrator\Ethereum Studio\testTransfer” in the Windows system. The “Project location” must be an empty documentation. The web client will save projects in the cloud automatically.

[image: Bs-4]

In the Ethereum Studio desktop client, set “Template” as “Basics - ERC20, ERC721 & ERC 1155” or Truffle framework “Metacoin” to save time importing basic projects in the later development process. While in the web client, there are only three types to choose from – “Empty Project”, “Coin”, and “ERC20 Token”. The “Open Zeppelin Version” is the latest version automatically.

[image: Bs-5]

Select one of the three different frameworks as the development environment in the Ethereum Studio desktop client. The frameworks are “Truffle”, “Hardhat”, “Waffle”, and “Dockerized Truffle”. Besides, there are also three types of “Npm client”, which are “npm”, “yarn”, and “cnpm” that will not show in the web client.

Those frameworks and tools will be used automatically in the command line when building or deploying projects. The default framework version is settled during the install process of Docker, and it will be introduced later.

Build contracts

In the Ethereum Studio desktop client, build a Solidity file through “Right Click”, the file name. In contrast, in the web client, clicking the “hammer” icon is the only way to build.

[image: Bs-6]

Keypair Manager with MetaMask

The Ethereum Studio web client will wake up the extension of MetaMask automatically in browser. After logging in to the MetaMask account, the Block Explorer will link to the account. Check the detailed information about it. Remember to import the mnemonic in the Keypair Manager to use it in the later paying gas fee in deploying.

Import a MetaMask account through mnemonic in Keypair Manager in the Ethereum Studio desktop client since the browser extension is invalid in the desktop client.

Development and Custom Network

Select “Network” as “Development” to set a local instance in the Ethereum Studio desktop client while the web client has no local network.

[image: Bs-7]

QuickStart

Login web client

Click the “Login” icon on the bottom of “not logged in”. Otherwise, click the upper right corner and click the “Login” on the panel.

[image: Qk-1]

Users login through their Github accounts, in the Ethereum Studio. Once logged, users log again through Github information automatically. The Ethereum Studio will not keep users’ accounts information.

Create an ERC20 project

After login, create a new project by clicking the green button with “New”.

[image: Qk-2]

Create an ERC20 project in Ethereum Studio. Set “Project” as “tokenTransfer” and “Template” as “ERC20 Token”. The project will be automatically saved in Ethereum Studio’s cloud under one’s account. Then click the purple button at the bottom left corner to create.

[image: Qk-3]

After the project is created, the ERC20 contracts have been generated successfully.

[image: Qk-4]

Connect to MetaMask Account

A MetaMask wallet pop up in the web client to login through users’ passwords. Suppose a user does not have a MetaMask account. Please refer to the MetaMask register introduction [https://metamask.zendesk.com/hc/en-us].

[image: Qk-5]

After linking to the MetaMask, copy the mnemonic into the Keypair Manager for later deploying contracts. Click the purple key icon on the bottom left corner and then click the “Import” button and paste the mnemonic words, 12 English Words representing the private key. Finally, give this imported private key a name, and the Etereum Studio will save it under this account in the cloud.

Request Ropsten Faucet

After choosing the “Network” and “Explorer”, click the upper right “Faucet” icon and get the request page of testETH on the testnet. Choose “Ropsten” testnet and click the icon to turn to the request page.

[image: Qk-6]

Click the upper right “Faucet” icon, and the page will jump to the Ropsten Faucet. One can copy the wallet address in MetaMask and paste it into the box. Then clicks the button “Send me test Ether” and wait for a few minutes.

[image: Qk-7]

With all the requests finished, there will be 5 testETH in the wallet address on Ropsten test network.

[image: Qk-8]

Back to the web client, check the balance if there is 5 testETH on the test network, Ropsten.

[image: Qk-9]

Build Contracts

There is three Solidity files in the “ERC20/contracts/” file in the left panel after successfully creating the project. Select one of the contract and click the “Hammer” icon to build the contract.

[image: Qk-10]

Now this IDE only supports building all contracts together. Single-file compilation will come soon in the later version.

[image: Qk-11]

Deploy Contracts

After a successful building, deploy the ERC20 contract on the Ropsten testnet. Select the JSON file “ERC20.json”.

[image: Qk-12]

Then set “name_” as “test”, “symbol_” as “TEST” and totalSupply as “3000000000”.

[image: Qk-13]

Select the signer as the keypair saved in Keypair Manager. If there is no choice, please check the chapter Keypair Manager.

[image: Qk-14]

Set the “Tip” as desired amount, or generate it with “Gas Limit” and “Max Fee” together by clicking the bottom right button to “Estimate”. There will be the estimated fee in real-time. If the fee is not reasonable, click the “Re-estimate” or wait for a non-congestion period.

[image: Qk-15]

After deploying successfully, a window with detailed transaction information will pop up. Now the contract has been deployed at the address: 0xF30438E789b361Eca03B3C7AB8cB176e436C7259. Click the address to turn to the “Contract” interface.

[image: Qk-16]

Check Balance and Transfer

Since 5 test ETH is far enough for paying fees, choose the “transfer” function from the purple inverted triangle icon. Select the “recipient” as the target address and set the token amount to transfer as 1000. Click the purple “Estimate” button to set “Parameters” and “Gas” automatically.

[image: Qk-17]

After all the parameters are settled, click the triangle icon beside “transfer” to execute a function.

[image: Qk-18]

After the compeletion of “PUSHING” state, the contract is deployed successfully with the “CONFIRMED” state. Select “Explorer” on the upper right panel to see the past transaction detail.

[image: Qk-19]

After transferring the 1000 “TEST” token, click the upper right “Explorer” to see the left balance of 4.997 test ETH now. The balance consumed by the “Gas Fee” and “Tip” will not be 5 testETH for deploying and calling a contract.

[image: Qk-20]

Here is the most simple quickstart example of the Ethereum Studio. Please feel free to ask us any questions through Github issue link [https://github.com/ObsidianLabs/EthereumStudio/issues/new].

Project

Developers can create a new project, open projects and check all the local and remote projects in the upper left corner “Project” panel.

Create Project

Click “Create Project” and create a new project in either local or cloud under account. The created projects will show in both desktop and web clients in real-time. Creating a project and editing it can be done solely in the Ethereum Studio without other development tools like Visual Studio Code.

[image: Pr-1]

In “Create a New Project” panel, developers input the “Project name”, while the “Project location” will be automatically generated a document path following “C:\Users\Administrator\Ethereum Studio” in Windows.

[image: Pr-2]

Developers can change the path to any other documents. Click the “Choose” button on the left of the default path, and one will see all documents in the whole computer and choose another existing document or create a new document as the new project location. Be careful that the new project location must be an empty file.

[image: Pr-3]

Frameworks

Developers can choose 4 different frameworks: Truffle, Hardhat, Waffle and Dockerized Truffle. The detail information about those frameworks can be checked in “Supported Frameworks” under “Reference” of this doucument.

Template

In “Template”, there are several different templates including “Empty”, “Coin”, “ERC20”, “Basic” and “Metacoin”.

In “Empty Project” template, there is a default empty project with contracts “Main.sol”. The only “Main.sol” contract has no content. This template is a minimum viable product to build smart contracts from scratch.

[image: Pr-4]

In “Coin” template, there is a default empty project with contracts “Coin.sol”. This template is a primary contract with variables and functions that could help developers build coin-related contracts. Please remember that a definition of coin functions creates this contract and it does not follow any ERC standards.

[image: Pr-5]

In “ERC20 token” template, there is an ERC20 standard token project including “ERC20.sol”. The “ERC20.sol” contract has all functions the ERC20 standard required. There are also “IERC20” interface. Using the interface would reduce work of setting parameters and provide reliable third-party essential functions for developers to call. This template and generates ERC20 standard related contracts and interfaces locally.

[image: Pr-6]

In “Basics - ERC20, ERC721 & ERC1155(v3.1+)” template, there are three ERC standard contracts including “GLDToken.sol”, “GameItem.sol” and “GameItems.sol”. Those three smart contracts inherited ERC20, ERC721 and ERC1155 standards respectively. All three projects import ERC standards through Open Zeppelin and realized only constructor function with basic parameters. Developers can use those smart contracts to understand how the ERC20 tokens and ERC721 and ERC1155 NFTs are minted. The “Basic OpenZeppline Template” will use interfaces online and developers only need to import ERC standard contracts through code.

[image: Pr-7]

In “Metacoin” template, there is a default framework “Dockerized Truffle” including “ConvertLib.sol”, “MetaCoin.sol” and “Migrations.sol”. In this project, developers choose “Dockerized Truffle” since ???

[image: Pr-8]

npm Clients

npm(Node Package Manager) stems from when npm first was created as a package manager for Node.js. All npm packages are defined in files called package.json. The content of package.json must be written in JSON. At least two fields must be present in the definition file: name and version.

cnpm is faster than npm in China, because Taobao first requests the contents of foreign servers to its own domestic servers, so when we use cnpm, the download depends on downloading from domestic servers, which is much faster. It has a complete image of npmjs.org. At present, the synchronization frequency is once every 10 minutes to ensure that it is synchronized with the official service as much as possible.

yarn offers offline mode. If developers have installed a package before, developers can install it again without any Internet connection. Yarn has a lock file that records the exact version number of the installed module. Each time a file is added, yarn will create (or update) the yarn.lock file to ensure that the module version is the same each time the dependency is installed. Yarn reduce the different versions of dependent packages to a single version to avoid creating multiple copies.

Open Project

Click “Open Project”, one can check the location of the current project or open an existed project in the system.

[image: Pr-9]

[image: Pr-10]

Local Projects and Cloud Projects

In the “Local Projects” and “Remote Projects” of the “File” panel, the user can see all the projects in local computer and cloud under one’s account. Developers can quickly switch to another project through panel that is helpful for muti-project developers.

[image: Pr-11]

Delete Project

Right click the name of any project in the panel, developers can chose “Remove” and the project is deleted immediately. Be careful since the deleted project can not be restored from “Trash Can” on the desktop.

[image: Pr-12]

Editor

Build

After test and develop, developers needs to build smart contracts.

Build Preparation

When an existed project is opened, the Ethereum Studio can automatically detect the solidity version written at the head of contracts. Developers can select the specific version of the solidity compiler by clicking the “hammer” icon at the bottom right corner with “Solc(0.x.y)”.

[image: Tb-3]

Build by Panel

In the desktop client, developers can click the “hammer” icon below the “Project” panel or right-click the target file and select “Compile” to build the contract. Now the Ethereum Studio only supports building all contracts together, and the single file building will be released later.

Developers can find differences between web and desktop clients on building a project. The detail explanation can be checked in Chapter Install Desktop Client, Contrast with Web Client.

[image: Tb-4]

[image: Tb-5]

Build by Command Line

Developers can build contracts manually by opening the command line, clicking the “Terminal” icon and inputting the command through “Project” panel. Please note that the command must be corresponding to the selected framework during creating process. Developers can check the framework type in “package.json” with the commands following “scripts”.

[image: Tb-6]

Check Building Details

After building successfully, the framework will build a new document named “build” containing a “contracts” document. In “contracts” document, there are all the JSON files generated in the building process. Each JSON file has the corresponding application binary interface(ABI). Developers will deploy ABI files on the network later.

[image: Tb-7]

Deploy

After building process, developers can deploy target contracts with generated ABI files.

Deploy by Panel

Developers can right-click the file name of an contract and select “Deploy”, and there will popup a “Deploy Contract” window. By other means, developers can click the “Docker” icon below the “Project” panel.

[image: Tb-8]

[image: Tb-9]

Deploy by Command Line

Developers can open the command line to deploy contracts manually by clicking the “Terminal” icon and input command through the “Project” panel. Please note that the commands must be corresponding to the selected framework during project creating process. Developers can check the framework in “package.json” with commands following “scripts”.

Deploy Preparation

There will be a “Deploy Contract” window in the preparation process. Developers can choose a JSON file to deploy on the network in this window.

[image: Tb-10]

“Constructor Parameters” are corresponding to the constructor function parameters for users to input.

[image: Tb-11]

Developers can choose “Signer”, the final payer of gas fee and tip for deploying this contract. Developers needs to ensure the signer has enough ETH on the target network. Otherwise, the later “Estimate & Deploy” process will not be successful.

[image: Tb-12]

The “Estimate & Deploy” button locates at the bottom right corner. There will be a real-time estimation of “Gas Limit”, “Tip”, and “Max Fee” located below. It will be significantly different for the estimation time and price. Developers should carefully check the network gas fee before deploying.

[image: Tb-13]

After estimating process, there are exact price numbers in each box. If developers feel the gas fee price is too high or the network is too busy, click the green “Re-estimate” button at the bottom left corner to estimate cost again. If developers supposes the price is fair, click the purple “Deploy” button on the bottom right corner to deploy the contract.

[image: Tb-14]

Check Deploy Transactions

After clicking “Deploy”, developers can check deploy schedule by clicking the bottom “Transactions” button to review any transaction. Developers can check detailed information with the popup “Deploy a Contract” window.

[image: Tb-15]

Five boxes show detailed information in the “Deploy a Contract” window. In the “Basic” panel, there are several most crucial pieces of information of deployment, including address. Developers can click on the “Contract” address, and the “Contract” panel will show the contract functions for developers to call.

[image: Tb-16]

Project Settings

At the right end of the toolbar, there is a “gear” icon named “Project Settings”. Click the icon, and there will be the “Project Settings” panel in the editor. This panel is a graphic show of the “config.json” file. Developers can easily change settings in the project.

[image: Tb-17]

General

In the “General” part, the “Main file” is the default selection of deploying file.

Developers can switch the framework here and then use a new framework to build or deploy with more detailed configuration in “package.json”.

Developers can change clients here and use a new client like yarn or cnpm. Please make sure that developers has installed the clients and runs directly in the command line.

[image: Tb-18]

Compilers

Developers can select the Truffle version while the default version is settled during the creating process. The “Solc(0.x.y)” version is identical to the pragma version in the head of solidity file. Developers can change the EVM version and Optimizer directly. The Ethereum Studio disabled Optimizer???

[image: Tb-19]

Linter

Linters analyze code for possible programmatic and styling errors automatically. In “Project Settings”, there are Solhint and Ethlint. Developers can choose a familiar lint to complete codes.

[image: Tb-20]

Editor

In “Editor”, developers can choose a font-related configuration to make code more specific and direct as desired.

[image: Tb-21]

Tool Bar

Between “Project” panel and fill tree, tool bar has several quick functions for developers.

[image: Tb-22]

New File

Clicking “plus” icon named “New File”, developers can create a new file in the current path. Developers can define both name and type of the new file in the input box. Then, click the purple “Create” button and the new file will be generated successfully.

[image: Tb-23]

Build

Developers can build all the contracts together quickly by clicking the “hammer” icon. The detail information for buidling can be checked in “Build” section above.

Deploy

Developers can deploy the contract by clicking the “docker” icon. The detail information for buidling can be checked in “Deploy” section above.

Script

Click the “code” icon and select “build” or “deploy” in “Script”. Then there would be corresponding command line in “script” part of “package.json” inputted in the terminal and excuted automatically.

[image: Tb-24]

Project Settings

Click the “code” icon and select “build” or “deploy” in “Script”. Then there would be corresponding command line in “script” part of “package.json” inputted in the terminal and excuted automatically.

[image: Tb-25]

Network

Local Development

Developers may want to run a smart contract on a local network to see how it works before deploying. In Ethereum Studio, developers can create a local blockchain instance to test smart contracts inside the IDE. This local network provides much faster develop iteration than a public testnet(for instance, you don’t need to require test ETH from a testnet faucet).

Geth

Geth Version Manager

Click “Geth Version Manager” to set a specific version. Before first time launch of Ethereum Studio, developers had installed the Docker image of Geth, so there is a default version.

[image: Nw-1]

Developers can install a Geth version different to the default version.

[image: Nw-2]

Geth is installed through Docker image. Developers has to start Docker before installing.

[image: Nw-3]

After Geth installed, developers can check Geth version in “Geth Version Manager”. There will be a blue number icon beside the “Geth Version Manager” button indicating how many versions are in the manager.

If developers want to remove the installed Geth, double-click the “trash can” icon. After the first click, the “trash can” icon will turn red, and developers can click it again to delete this Geth.

[image: Nw-4]

New Instance

Click “New Instance” and a “New Instance (dev)” window will popup.

[image: Nw-5]

Developers can set “Instance name” in the window and change Geth version if there are different versions of Geth. Besides, developers can set “Miner” as the target account. Then click the “Create” button on the bottom right to make an instance.

[image: Nw-6]

After a new instance with target Geth version created, the instance will list on the panel. Click “Start” to run the development network. Developers can create an etheruem network and connect to it locally. This local ethereum network provides default 50 ETH for user.

[image: Nw-7]

Node Panel

Click the green “Start” button on the Geth instance will start it. With information running on the node panel, the development network is prepared for developers to deploy a contract instantly. This local node cost only local ETH while users already have 50 since node running, so it is easy to test smart contracts on the private network.

[image: Nw-8]

Remote

Mainnet

A mainnet is an independent blockchain running its network with its technology and protocol. It is a live blockchain where its cryptocurrencies or tokens are in use, compared to a testnet or projects running on top of other popular networks such as Ethereum.

Ethereum Mainnet is the primary public Ethereum production blockchain, where actual-value transactions occur on the distributed ledger. Ethereum mainnet uses real ETH as currency to transfer assets and pay gas fees and tips. There are many different Ethereum testnets, and each testnet uses its own test ETH as currency, respectively. Developers may deploy and test contracts on at least one testnet before the final release on the mainnet.

Testnets

In addition to Mainnet, there are public testnets. These networks are used by protocol developers or smart contract developers to test both protocol upgrades and potential smart contracts in a production-like environment before deployment to Mainnet.

It’s generally essential to test all smart contracts code on a testnet before deploying it to the Mainnet. Suppose developers building a dapp that integrates with existing smart contracts. In that case, most projects have copies deployed to testnets that you can interact with it.

Most testnets use a proof-of-authority consensus mechanism. This means a small number of nodes are chosen to validate transactions and create new blocks – staking their identity in the process. It’s hard to incentivize mining on a proof-of-work testnet which can leave it vulnerable.

Ropsten is a proof-of-work testnet for those running Geth, Besu and all other Ethereum clients. This means it’s the best like-for-like representation of Ethereum. Ropsten started in November 2016 and it can be used with all clients.

Rinkeby is a proof-of-authority(clique) testnet for those running Geth, Besu, Nethermind, and OpenEthereum client. Rinkeby started in April 2017 and is immune to spam attacks(as Trusted parties control ether supply).

Goerli is a proof-of-authority testnet that works across clients. Goerli started in November 2018. Goerli doesn’t fully reproduce the current production environment as it uses PoA.

Kovan is a proof-of-authority testnet for those running OpenEthereum clients. Kovan started in March 2017 and is immune to spam attacks. Kovan doesn’t fully reproduce the current production environment as it uses PoA.

Custom Network

In the Ethereum network, there are private networks and public networks. The Ethereum Studio can set “Custom Network” to connect the target network. Connecting to a network, developers can join the network of other nodes instead of establishing a network by oneself. Especially, developers can use a company’s network service like Infura Link(https://infura.io/docs).

[image: Nw-9]

New Connection

In the “Custom Network” panel, click the “gear” icon, and there will popup a window named “Custom Network”.

[image: Nw-10]

Click the “New Connection” button, and there will jump out a window for developers to add more network connections. Since each connection represents a node from one of the public or private networks, there will usually be a lot of different connections for developers to connect.

[image: Nw-11]

In the “New Custom Network Connection” window, developers can input the name and URL of node RPC. In this picture, there is a node of Ropsten network from Infura. Infura is a Web3 backend and Infrastructure-as-a-Service (IaaS) provider that offers blockchain developers a range of services and tools. Developers can use Infura as a fundamental infrastructure of Ethereum projects. Besides, developers can join other Geth nodes with the node parameters.

[image: Nw-12]

After clicking “Check Network,” a “Network info” will be added below the original panel. The panel shows detailed network information to be joined with “URL of node RPC”. Developers can check the information and join the network by clicking the “Add Network” button.

[image: Nw-13]

After adding a network, click the green “Connect” button, and there will be a “Blocks” panel showing the “Block Number”, “Block Time”, and “Difficulty” in real-time.

[image: Nw-14]

[image: Nw-15]

Block Explorer

Account

In the “Account” panel, there are “Balance” and “Nounce”. “Balance” represents the ETH amount of the developers. The “Nounce” represents the transaction experience. Specifically, the nonce in the ETH wallet is a scalar value equal to the number of transactions sent from this address or the number of contract creations made by this account. Nonce can be changed manually.

[image: Nw-17]

Information

Input one of the contract address in the search box. After pressing down the “Enter” button on the keyboard, the detailed information is shown on the “Information” panel. There is the “Code Hash” of the contract in the search box in the picture.

[image: Nw-18]

Transactions

In the “Transactions” panel, there is specific information of each transaction on the address, including “Time”, “Blockheight”, “Transaction Hash”, “Owner Address”, “Receiver Address”, “Value” and so on.

Developers can check the colour of the transaction value to know the input or the output of ETH since the input is green and the output is red. Besides, there is detail information of the receiver address reminding the action status. Developers can click the link of address to show the address in Block Explorer to check the history information.

[image: Nw-19]

Transfer

On the right of the address search bar, the “arrow cycle” icon provides transfer function for developers send ETH between address. Click it and a “Transfer” window will popup to let developers to input ETH amount and receiver address for a quick token preparation between address.

[image: Nw-20]

Faucet

There are currencies on the Ethereum network such as ETH and test ETH. Unlike ETH in the mainnet, test ETH has no real value. Therefore, there are no markets for testnet ETH. Most people get testnet ETH from faucets. Faucets are web apps where developers can input an address and the requested test ETH will be sent automatically.

First, choose one of the Ethereum testnets. Then set the account of Block Explorer. There is a “faucet” icon at the right end of the address search bar. Click the icon and it will turn to the faucet page of the corresponding testnet. The Ethereum Studio only supports faucets of Ropsten, Rinkeby and Kovan. Developers can check the Goerli faucet link by oneself.

[image: Nw-16]

Ropsten Faucet

Click the “Faucet” icon and the page will jump to the Ropsten Faucet. Developers can copy the wallet address and paste it into the box. Then developers clicks the button “Send me test Ether” and wait for a few minutes. There will be several test ETH of Ropensten testnet on balance.

Rinkeby Faucet

Following faucet instruction via inputting specific Twitter or Facebook message links, developers can get test ETH on Rinkeby. Developers can change the amount of test ETH with different lengths of time.

Kovan Faucet

???

Contract

In “Contract” panel, there are three different panels from left to right including “Write Functions”, “View Functions” and “Events” respectively. Developers can interact with “Write Functions”, mainly calling functions with assets and check the address status with “View Functions”. Besides, developers can set parameters and check related events in “Events”.

[image: C-1]

Write Functions

Parameters

In “Parameters”, developers mannually set function required parameters. Usually, there are owner, receiver, amount and so on for different functions. Please remember the token unit here is “wei”.

[image: C-2]

Gas

If developers want to call functions, there would be some gas fee and tip required by the miner of blockchain nodes. Especially when the network is congested, the gas fee can be very large, so developers should set a “Max Fee” in case of an unexpectedly high cost. Developers can click the purple “Estimate” button to get the real-time gas price of deploying contract on network. If developers supposes the price is not fair, they can click again or wait for a period and the Ethereum Studio will show changed price.

[image: C-3]

Authorization

In “Authorization”, developers can choose “Signer” to pay gas fee and tip.

[image: C-4]

Results

In “Results”, there are some direct results of the return value of functions. Developers check error or successful messages through results.

[image: C-5]

View Functions

The middle pannel represents “View Functions” in deployed contracts. View functions ensure that they will not modify the state. Most of time, developers can quickly check variable state by calling view functions. Yet view functions still could receive variables and return newly created data structure and variables. So this pannel could help developers check if they get wanted middle results.

Parameters

Some of view functions receive variables so they have “Parameters”. In “Parameters”, developers could switch variable types between “hex” bytes or “utf8” uint as functions required. By excuting function, developers check and get desire results without changing variables in contracts.

Results

There are two types of results, “Pretty” and “Raw”. In “Raw”, there are original return values of excuted view function. Switching to “Pretty”, the return values has more detail information such as number and types of returnd value.

Events

“Events” locates on the right pannel, where developers can choose and check detail information of events on the network. The types of events are corresponding to events in contract. For example, in the deployed ERC20 contract, there are “Approval” and “Transfer” events. Click the “Execute” triangle beside the “Approval” button, developers can check the latest event with its block number in the settled range.

[image: C-6]

Parameters

In “Parameter”, developers set numbers to quickly check the range of events in a list. If developers do not set numbers, the data range is the latest 100 by default.

Events Log

Detail information of required events will show on the “Events Log” with settled parameters and excuted events.

Keypair Manager

Click the purple “key” icon in the bottom left of panel and developers can see the “Keypair Manager” window popup.

[image: Km-1]

In “Keypair Manager” panel, there is a reminder showing that keypairs kept in the manager should not be used on mainnet. For the convenience of development, the keypairs are all unencrypted, private keys will easily be checked by anyone using a desktop client under the account. Since keypairs used on mainnet containing real ETH assets and private keys, it is dangerous to lose ETH and assets if developers keep Ethereum mainnet keypairs in the keypair manager.

[image: Km-2]

Create Keypair

Click the “Create” button on the bottom left corner. Developers can easily generate a random keypair for later deployment.

[image: Km-3]

In “Create Keypair” window, there will be a newly generated address and private key in “Keypair info”. The newly created key pair has no name, and developers can input a desired name for it as long as the new name is not the same as any other keypairs name. Otherwise, there would be an error message reminding the name has been used. Names can be easily changed in “Keypair Manager” later.

The keypair will show its name rather than address string in the Block Explorer panel since names may contain a more meaningful message for developers to recognize.

[image: Km-4]

In “Regenerate”, an inverted triangle shows that developers can either regenerate a private key or regenerate a mnemonic. In the blockchain, mnemonic means a fixed-length number of words that mnemonic can generate to one and only one private key for its user. Compared with private keys including random permutations of characters and numbers, the mnemonic can be easily remembered by a user who wants to keep critical information in a meaningful way.

If developers wants another keypair, they can click “Regenerate” and have a different private key or mnemonic with a corresponding address. After generating keypair and name, developers click “Create” in the bottom right corner of the panel and save this keypair in “Keypair Manager”.

[image: Km-5]

Check Keypair

In “Keypair Manager”, there is a list of keypairs showing names and adresses. Developers can quickly select whole address by double clicking the address. If developers want to check private key of any keypair, they can move mouse upon the address and there will be a “eye” icon showing on the right of address. Double click the icon and there will be a window named “View Private Key” showing “Address” and “Private Key” of selected keypair.

Delete Keypair

After creating several keypairs, developers can delete the unwanted keypair by double-clicking the “trash can” icon at the right end of the address of keypair. Please remember that the keypair deleted can not be restored unless one has kept the keypair information before and import the keypair again mannually.

[image: Km-6]

Import Keypair

Except for creating or recreating a random key pair, developers can import an existed keypair by clicking the green “Import” button on the bottom left. There will be an “Import Keypair” window after clicking. Developers can copy the existed keypair information and paste it into the box. The corresponding address is automatically generated after inputting the private key or mnemonic. A green “checkmark” will be at the end of the box, indicating a correct input under rules. Then, click the “Import” button on the bottom right corner to import the keypair.

[image: Km-7]

Import MetaMask Mnemonic

In MetaMask, developers uses a mnemonic as a private key to enter the wallet. Developers can import the mnemonic of MetaMask as a login MetaMask wallet from a newly installed browser extension of MetaMask. Developers can check detail information in link [https://docs.metamask.io/guide/common-terms.html#words-are-hard].

RPC Client

Supported Faucets

There are currencies on the Ethereum network such as ETH and test ETH. Unlike ETH in the mainnet, test ETH has no real value. Therefore, there are no markets for testnet ETH. Most people get testnet ETH from faucets. Faucets are web apps where developers can input an address and the requested test ETH will be sent automatically.

First, choose one of the Ethereum testnets. Then set the account of Block Explorer. There is a “faucet” icon at the right end of the address search bar. Click the icon and it will turn to the faucet page of the corresponding testnet. The Ethereum Studio only supports faucets of Ropsten, Rinkeby and Kovan. Developers can check the Goerli faucet link by oneself.

Ropsten Faucet

Click the “Faucet” icon and the page will jump to the Ropsten Faucet. Developers can copy the wallet address and paste it into the box. Then developers clicks the button “Send me test Ether” and wait for a few minutes. There will be several test ETH of Ropensten testnet on balance.

	Ropsten Faucet 1 [https://faucet.egorfine.com/]

	Ropsten Faucet 2 [https://faucet.dimensions.network/]

	Ropsten Faucet 3 [https://faucet.ropsten.be/]

Rinkeby Faucet

Following faucet instruction via inputting specific Twitter or Facebook message links, developers can get test ETH on Rinkeby. Developers can change the amount of test ETH with different lengths of time.

	Rinkeby Faucet 1 [https://faucet.rinkeby.io/]

	Rinkeby Faucet 2 [https://faucets.chain.link/rinkeby]

Goerli Faucet

Following faucet instruction via inputting specific Twitter or Facebook message links, developers can get test ETH on Rinkeby. Developers can change the amount of test ETH with different lengths of time. This procedure is similar to Rinkeby Faucet.

	Goerli Faucet 1 [https://faucet.goerli.mudit.blog/]

	Goerli Faucet 2 [https://faucets.chain.link/goerli]

Kovan Faucet

Click the link of “Kovan Faucet 1” and request test ETH as instruction.

	Kovan Faucet 1 [https://faucets.chain.link/kovan]

	Kovan Faucet 2 [https://gitter.im/kovan-testnet/faucet]

Supported Frameworks

Open Zeppelin

Open Zeppelin provides a complete suite of security products to build, manage, and inspect all aspects of software development and operations for Ethereum projects.

In the Ethereum Studio, developers can import Open Zeppelin contracts through the template. Detail information about Open Zeppelin can be checked in link [https://docs.openzeppelin.com/openzeppelin/].

Hardhat

Hardhat is a development environment to compile, deploy, test, and debug Ethereum software. It helps developers manage and automate the recurring tasks inherent to the process of building smart contracts and dApps and quickly introduces more functionality around this workflow. This framework means compiling, running and testing smart contracts at the very core.

In the Ethereum Studio, developers can use Hardhat as a development framework. Developers can choose it during the creation of projects. Developers can also use this framework during the development process by the command line in the Ethereum Studio. Detail information about Hardhat can be checked in link [https://hardhat.org/getting-started/].

Truffle

Truffle is a development environment, testing framework and asset pipeline for blockchains using the Ethereum Virtual Machine (EVM). With Truffle, users get a built-in smart contract compilation, linking, deployment and binary management. Truffle also has network management for deploying to any number of public & private networks.

In the Ethereum Studio, developers can use Hardhat as a development framework. Developers can choose it during the creation of projects. Developers can also use this framework during the development process by the command line in the Ethereum Studio. Detailed information about Hardhat can be checked in link [https://trufflesuite.com/docs/truffle/].

Dockerized Truffle used only Truffle in Docker image without other dependencies like Node.js and Npm in local. The other two Frameworks, Hardhat and Waffle, require Node.js and Npm.

Waffle

Waffle is a library for writing and testing smart contracts. Sweeter, simpler and faster than Truffle. In Waffle, “Simpler” means minimalistic, few dependencies; “Sweeter” means nice syntax, easy to extend; “Faster” means to focus on the speed of tests execution. Waffle uses a set of chai matches, and it can import contracts from npm modules easily. There is also a fast compilation with native and dockerized solidity contracts. It provides fixtures that help write fast and maintainable test suites.

In the Ethereum Studio, developers can use Waffle as a development framework. Developers choose Waffle during the creation of projects. Developers can also use this framework during the development process by the command line in the Ethereum Studio. Detailed information about Waffle can be checked in link [https://ethereum-waffle.readthedocs.io/en/latest/].

Supported Testnets

Ethereum Mainnet is the primary public Ethereum production blockchain, where actual-value transactions occur on the distributed ledger. There are many different Ethereum Testnets, and each testnet uses its own test ETH as currency, respectively. It’s generally essential to test all smart contracts code on a testnet before deploying it to the Mainnet.

Most testnets use a proof-of-authority consensus mechanism. This means a small number of nodes are chosen to validate transactions and create new blocks – staking their identity in the process. It’s hard to incentivize mining on a proof-of-work testnet which can leave it vulnerable.

Ropsten

Ropsten is a proof-of-work testnet for those running Geth, Besu and all other Ethereum clients. This means it’s the best like-for-like representation of Ethereum. Ropsten started in November 2016 and it can be used with all clients. Detail information can be checked in link [https://docs.etherscan.io/v/ropsten-etherscan].

Rinkeby

Rinkeby is a proof-of-authority(clique) testnet for those running Geth, Besu, Nethermind, and OpenEthereum client. Rinkeby started in April 2017 and is immune to spam attacks(as Trusted parties control ether supply). Detail information can be checked in link [https://docs.etherscan.io/v/rinkeby-etherscan].

Goerli

Goerli is a proof-of-authority testnet that works across clients. Goerli started in November 2018. Goerli doesn’t fully reproduce the current production environment as it uses PoA. Detail information can be checked in link [https://docs.etherscan.io/v/goerli-etherscan/].

Kovan

Kovan is a proof-of-authority testnet for those running OpenEthereum clients. Kovan started in March 2017 and is immune to spam attacks. Kovan doesn’t fully reproduce the current production environment as it uses PoA. Detail information can be checked in link [https://docs.etherscan.io/v/kovan-etherscan].

Transaction History

Transaction Detail

After calling functions, developers can check the transaction status in the “Transaction” button at the bottom of IDE. Click the function name, and there will be a popup “Call a Contract” window.

[image: C-7]

There is detailed information about the transaction in the “Call a Contract” window. In this window, the contract address means where the function is called. There is other detailed information for developers to check in different panels.

[image: C-8]

Truffle Migration Script

ABI Storage

Index

Login

Clicking the upper right corner “User” icon will be a window jumping out. One can log in through a Github account, and the Ethereum Studio will restore this account so one can log in quickly in the latter. After login, one can start one’s project or create a new project through the button of the “Project” panel.

[image: Lg-1]

My Projects

Before login, one can click “My Projects” to check all projects in the local desktop client. In contrast, in the Ethereum Studio Web client, one can only check the projects in the cloud.

[image: Lg-2]

After login through a Github account, one can click user name and check all projects, including “Local” and “Cloud”. Users can check all projects in the cloud through the Ethereum Studio Web client.

[image: Lg-3]

Ethereum Studio Web

Click “Ethereum Studio Web” will be a page directed to the Ethereum Studio Web client with Link (https://eth.ide.black/ [https://eth.ide.black/HanYouyang]User-Name-Logged-In). One can develop their Cloud projects in the web client with browser extensions, including MetaMask.

Github Repo

By clicking “Github Repo”, there will be a page directed to the Github project page of the Ethereum Studio. One can download the latest release of the Ethereum Studio Desktop client and do all other things in Github.

[image: Lg-4]

Report an Issue

Click “Report an Issue,” and there will be a page directed to the Link (https://github.com/ObsidianLabs/EthereumStudio/issues/new). One can immediately report any error message or bug of the Ethereum Studio itself. This would be a great help for our team to improve this IDE for better service. Thank you for your issue!

[image: Lg-5]

[image: Lg-6]

Log out

One can log out by clicking “Log out” and login another account. Please make sure that the Github account logged before has signed out through the Github page of one’s account. Then one can log in to the Ethereum Studio via another Github account.

[image: Lg-7]

Tool Bar

New File

At the left end of the “Tool Bar”, there is a “New File” button. Click it, and there will be a popup “New File” window.

[image: Tb-1]

In the “New File” window, one can input file name and type. The path is the same as the location of the chosen file.

[image: Tb-2]

Build

Build Preparation

The Ethereum Studio can automatically detect the solidity version written at the head of contracts. One can select the specific version of the solidity compiler by clicking the “hammer” icon at the bottom right corner. Developers need to choose an appropriate version corresponding to the requirement of contracts.

[image: Tb-3]

Build by Panel

In the desktop client, one can click the “hammer” icon below the “Project” panel or right-click the target file and select “Compile” to build a contract. The Ethereum Studio only supports building all contracts together, and the Ethereum Studio will release single file building later.

Developers can find Buiding difference between web and desktop clients in Chapter Install Desktop Client, Contrast with Web Client.

[image: Tb-4]

[image: Tb-5]

Build by Command Line

To build contracts manually, one can open the command line by clicking the “Terminal” icon and input the command through the “Project” panel. Please note that there must be the command same as the selected framework during project building. One can check the framework in “package.json”. In “scripts”, there will be corresponding commands for manually input in the command line.

[image: Tb-6]

Check Building Details

After building successfully, the framework will build a newly created document named “build” containing a “contracts” document. In the “contracts” document, there will be all the JSON files generated by the building. Each file has the related contract’s application binary interface(ABI). One will deploy ABI files on the network later.

[image: Tb-7]

Deploy

After building projects, there are successfully generated ABI files required by later deploying. One can check the newly created “build” document in the project and find the JSON file with the target name to deploy.

Deploy by Panel

One can right-click the file and select “Deploy” or click the “Docker” icon below the “Project” panel, and there will popup a “Deploy Contract” window.

[image: Tb-8]

[image: Tb-9]

Deploy by Command Line

One can open the command line to deploy contracts manually by clicking the “Terminal” icon and input command through the “Project” panel. Please note that there must be the command same as the selected framework during project building. One can check the framework in “package.json”. In “scripts”, there will be corresponding commands for manually input in the command line.

Deploy Preparation

There will be a “Deploy Contract” window in the deployment preparation process. This window can select a JSON file to deploy on the network.

[image: Tb-10]

Several “Constructor Parameters” are related to the constructor function parameters for users to input as desired.

[image: Tb-11]

In the “Deploy Contract” window, one can choose “Signer, ” the final payer of gas fee and tip. One needs to ensure the signer has enough ETH on the interconnected network. Otherwise, the later “Estimate & Deploy” process will not be successful.

[image: Tb-12]

The “Estimate & Deploy” button is at the bottom right corner. There will be a real-time estimation of “Gas Limit”, “Tip”, and “Max Fee” located below. It will be significantly different for the estimation time and price. One should carefully check the network to deploy before deploying.

[image: Tb-13]

After estimating process, there is an exact price number on the corresponding box. If one feels the gas fee price is too high or the network is too busy, click the green “Re-estimate” button at the bottom left corner to estimate cost again. If one supposes the price is fair, click the purple “Deploy” button on the bottom right corner to deploy this contract.

[image: Tb-14]

Check Deploy Transactions

After clicking “Deploy”, one can check to deploy schedule by clicking the bottom “Transactions” button to select any transaction. One can check the detailed deployment process information with the popup “Deploy a Contract” window.

[image: Tb-15]

Five boxes show detailed information in the “Deploy a Contract” window. In the “Basic” panel, there are several most crucial pieces of information of this transaction, including address. One can click on the “Contract” address, and the “Contract” panel will show the contract functions for one to call.

[image: Tb-16]

Project Settings

At the right end of the toolbar, a “gear” icon is named “Project Settings”. Click it, and there will be the “Project Settings” panel in the editor. This panel is a graphic show of the “config.json” file. One can easily change the settings of the project.

[image: Tb-17]

General

In the “General” part, the main file location is the default selection on the deploy choice.

There are also the framework and npm clients of this project. One should change the framework here and then use a new framework to build or deploy since there is a more detailed configuration.

One can change Npm client here and use a new client like yarn or cnpm. Please make sure one has installed other clients before and runs directly in the command line.

[image: Tb-18]

Compilers

One can select the Truffle version while the default version is chosen when the project is built. The Solc version is identical to the pragma version in the solidity file. Developers can change the EVM version and Optimizer directly. The Ethereum Studio disabled Optimizer???

[image: Tb-19]

Linter

Linters automatically analyze code for possible programmatic and styling errors. In “Project Settings”, there are Solhint and Ethlint. One can choose a familiar lint to complete codes.

[image: Tb-20]

Editor

In “Editor”, one can choose a font-related configuration to make code more specific and direct as one desired.

[image: Tb-21]

 _images/Tb-23.png
New File x

0 Create anew file in C:\Users\Administrator\Ethereum Studio\ERC\contracts

newfile.sof

M o

_images/Tb-24.png
~ ERC

ScRIPTS 1 f : 1
> artifact| 2 name” B
build . .
> contraq version™: "1.0.0",
| deploy a “description”: "This is a sample project of [OpenZeppelin contracts](https://openzeppelin
> scripts 5 ardhat. config. js”,
B configjson
. 7 ardhat compile —-config hardhat.config.js",
B hardhat.configs hardhat run scripts/deploy.js”
B package lock json
i 1 “keywords: [1,
B package,json ST (0]
B README.md 12
1 devDependencies™: {
14 ‘@nomiclabs/hardhat-ethers s
15 ‘@nomiclabs/hardhat-waffle .
1 ~@openzeppelin/contracts
17 “chai: ""4.3.6%,
1 ethereun-waffle -
1 ethers": "°5.5.4",
2 “hardhat" []
!
& Project @
> erce1.0.0 build

. # Ropsten B Transactions

> hardhat conpile --config hardhat.config.js

Conpiling 21 files with 0.8.0
Compilation finished successfully
npm run build

> ercg1.0.0 build
> hardhat conpile --config hardhat.config.js

Conpiling 21 files with 0.8.0
Compilation finished successfully

= ABI Storage

_images/Tb-21.png
File Edit View Application

» Contract - Explorer - p Network - @
Oxca0ffc26... Oxca0ffc26... Ropsten
+ N & <« & Project Settings X <
v testBasic i i
» build EVM version
v contracts
Gameltem.sol Istanbul M
Gameltems.sol o
GLDToken.sol Optimizer runs
v deploys
dev.test 20211229_170607.json
rinkeby 20211229 _185825.json q
ropsten_20211230_170532.json Linter
» migrations Solhint a

package-lock.json

package.json Sellie]y

README.md Font Family

truffle-config.js
Hack

Font Size

13px

Font Ligatures

Disabled

. & Ropsten B Transactions := ABI Storage

/¥ Solc(0.8.0) >_

_images/Tb-22.png
+ M@]
v ERC
v contracts
B Gameitem.sol
B Gameltems.sol

B GLDToken.sol

> scripts
B configjson

B hardhat.configjs
B package lock json
B package json

B README.md

. B Development [Transactions

hme) - Qe

Gameltems.sol Gameltem.sol hardhat.config.js Project Settings

pragma solidity 0.8.0;
import "@openzeppelin/contracts/token/ERC20/ERC20. 501" ;
7 contract GLDToken is ERC20 {

constructor(uint2s6 initialsupply) ERC20(Gold", “GLD") {
_mint(msg.sender, initialsupply);

= ABI Storage

GLDToken.sol X

_images/C-4.png
B Ethereum Studio _ O

File Edit View Application

ﬁ Project Explorer Network
- p -
(None) test Ropsten
0xcalf ...df3a x <

(6 O Oxcadf 73f b83f71e74e03c008558df3a

B =N >

8 hpprovet - b

Parameters Parameters Parameters

recipient owner Range

Q 0x9584bfbe913e75413d4c2f: @D Q - Clear
amount spender Event Logs

123 123 Q

BLOCK OWNER SPENDER VALUE
address address uint256

Gas (Estimate’ Result (no data)

Gas Limit (None)

6 30420

Tip

< 2500000000 [l
Max Fee

@& 6192511662

Signer

» 0x9584bfbe913e75413d4c2... (=D

Result

(None)

. & Ropsten B Transactions := ABI Storage

_images/C-5.png
B Ethereum Studio _ O

File Edit View Application
A Project Explorer Network

h (None) test v p Ropsten v
0xcalf ...df3a x <

C' Q 0xcadf 73f b83f71e74e03c008558df3a

[EE==EN EEEETE > 8 hpprovet - b

recipient Parameters Parameters
Q 0x9584bfbe913e75413d4c2 @D

account Range
amount Q 0x9584bfbe913e75413d4c2f: {EED - Clear
123 123
Result & Event Logs
Gas (BLOCK OWNER SPENDER VALUE
3000000000 uint256 address address uint256
Gas Limit
no data

6 30420 ! :
Tip

< 2500000000
Max Fee V

@& 6192511662

Authorization

Signer

0x9584bfbe913e75413d4... 5D

& Ropsten B Transactions := ABI Storage

_images/C-2.png
B Ethereum Studio

File Edit View Application
ﬁ Project
(None)

0xcalf ...df3a x <

Expl! N k
Xplorer - p etworl
test Ropsten

(6 O Oxcadf 73f b83f71e74e03c008558df3a

Parameters Parameters Parameters
spender owner Range
Q Q
amount spender Event Logs
123 Q
BLOCK OWNER SPENDER VALUE
address address uint256
Gas (Estimate’ Result (no data)
Gas Limit (None)
(o}
Tip
53 /
Max Fee
é

Authorization

Signer

» 0x9584bfbe913e75413d4c2... (EED

Result

(None)

. & Ropsten B Transactions := ABI Storage

_images/Tb-25.png
+ > e
v ERC
> artifacts
> contracts
> scripts

Project Settings

u B configjson

B hardhat.configjs
B package lock json
B package json
B README.md

B oarsroes. ~ @

& Gimeltemssol Gameltem.sol hardhat.config s

Project Settings

® C:\Users\Administrator\Ethereum Studio\ERC

General
Main file

.Jcontracts/Gameltems.sol

Smart contract to deploy

Framework
Hardhat
Npm client

npm

Compilers

Solc version

. # Ropsten B Transactions = ABI Storage

Project Settings %

GLDToken.sol

O - @

package-lockjsc +

2 s0lc(0.8.0) 3

_images/C-3.png
B Ethereum Studio _ O

File Edit View Application

ﬁ Project Explorer Network
- p -
(None) test Ropsten
0xcalf ...df3a x <

(6 O Oxcadf 73f b83f71e74e03c008558df3a

o approve - b =N >

8 hpprovet - b

Parameters Parameters Parameters
spender owner Range
Q Q = Clear
amount spender Event Logs
123 Q
BLOCK OWNER SPENDER VALUE
address address uint256
Result
(no data)
(None)

Authorization

Signer

» 0x9584bfbe913e75413d4c2... (EED

Result

(None)

. & Ropsten B Transactions := ABI Storage

_images/Tb-3.png
thereum St

File Edit View Application

L n Contract Explorer Network
xecute 0x519dbfb8... oxsba3acor. ~ & Ropsten
+ N & < 3 Gameltems.sol X <
+ testBasic 1 // contracts/GameItems.sol
_ 2 // SPDX-License-Identifier: MIT
3 pragma solidity 70.8.0;
) contracts 4
) contracts 5 1import "@openzeppelin/contracts/token/ERC1155/ERC1155.s01";
6
> el 7 contract GameItems is ERC1155 {
» migrations 8 uint256 public constant GOLD = 0;
config.json 9 uint256 public constant SILVER = 1;
K lock.i 0 uint256 public constant THORS_HAMMER = 2;
package-lock.json 1 uint256 public constant SWORD = 3;
package.json 2 uint256 public constant SHIELD = 4;
README.md 3 i
. A 4 constructor() ERC1155("https://game.example/api/item/{id}.json")
truffle-config js 5 “mint(msg.sender, GOLD, 10%*18, ""); I- VERSIONS
6 _mint(msg.sender, SILVER, 10%**27, ""); soljson-v0.8.6+commit.11564f7e.js
7 _mint(msg.sender, THORS_HAMMER, 1, "");) .)
8 _mint(msg.sender, SWORD, 10%%9, ""); soljson-v0.8.5+commit.a4f2e591.js
9 _mint(msg.sender, SHIELD, 10%x9, "*); soljson-v0.8.4+commit.c7e474f2.js
20 }
21 } soljson-v0.8.3+commit.8d00100c.js
Q 2z soljson-v0.8.2+commit.661d1103.js
‘ soljson-v0.8.1+commit.df193b15.js
soljson-v0.7.6+commit.7338295f.js
& Project

soljson-v0.7.5+commit.eb77ed08.js

soljson-v0.7.4+commit.3f05b770.js

soljson-v0.7.3+commit.9bfce1f6.js

soljson-v0.7.2+commit.51b20bc0.js

. soljson-v0.7.1+commit.f4a555be.js

. & Ropsten B Transactions i= ABI Storage /" Solc (0.8.0)

_images/C-8.png
B Ethereum Studio

File Edit View Application

Call a Contract

- Parameters Tx Receipt Result

Hash 0x26cae6b4dc963b8dcb641bff6f0ef3f509a99d005e15a2T8b38c7a3e2a3f2ffb

) Status | CONFIRMED |

E Contract 0xca0ffc26473fcf835b83f71e74e03c008558df3a

feo Function transfer
& ETH Sent 0.0 ETH
' Signer 0x9584bfbe913e75413d4c2fa1523b18cead5387a9

Close

_images/Km-1.png
B Ethereum Studio

File Edit View Application

ﬁ Contract Explorer = Network
v v v
(None) 0x5b43a901... == Development

{+ N & < o ERC20.s0l X <+

v testERC20 1 // SPDX-License-Identifier: MIT e
2
P e 3 pragma solidity "0.8.0;
» migrations 4
config.json 5 import "./IERC20.sol";
K lock.i 6 import "./IERC20Metadata.sol";

package-lock.json 7 import "./Context.sol";

package.json 8

README.md 9/ . ,

. (0] * @dev Implementation of the {IERC20} interface.

truffle-config.js 1 .
2 * This implementation is agnostic to the way tokens are created. This means
3 * that a supply mechanism has to be added in a derived contract using {_mint}.
4 * For a generic mechanism see {ERC20PresetMinterPauser}.
5 *
6 * TIP: For a detailed writeup see our guide
7 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
8 * to implement supply mechanisms].
9 *
20 * We have followed general OpenZeppelin guidelines: functions revert instead
21 * of returning “false® on failure. This behavior is nonetheless conventional
22 * and does not conflict with the expectations of ERC20 applications.
23 *
24 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
25 * This allows applications to reconstruct the allowance for all accounts just
26 * by listening to said events. Other implementations of the EIP may not emit
27 * these events, as it isn't required by the specification.
28 *
29 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
30 * functions have been added to mitigate the well-known issues around setting
31 * allowances. See {IERC20-approve}.
32 27
33 contract ERC20 is Context, IERC20, IERC20Metadata {
34 mapping(address => uint256) private _balances;
35

a@ Development E Transactions i= ABI Storage /¥ Solc(0.8.0) >_

_images/C-6.png
B Ethereum Studio _

File Edit View Application

ﬁ Project Explorer Network
v p
(None) Oxcadffc26... Ropsten

0xcalf ...df3a x <

(6 O Oxcadf 73f b83f71e74e03c008558df3a

o approve - b =N >

8 hpprovet - b

Parameters Parameters Parameters
spender owner Range
Q Q 11722132 - 11723131
amount spender Event Logs
123 Q
BLOCK OWNER SPENDER
address address
Gas (Estimate’ Result
11722968 0x9584BfBe913e75413D4c2fA1523b18CEad5387a9 0x9584BfBe913e7:
Gas Limit (None)
(o}
Tip
$
[4
Max Fee
é

Authorization
Signer
P 0x9584bfbe913e75413d4c2... (@5
. Result

(None)

. & Ropsten B Transactions := ABI Storage

_images/C-7.png
B Ethereum Studio

File Edit View Application
ﬁ Project
(None)

0xcalf ...df3a x <

Explorer
test

Network
- p etwor
Ropsten

(6l O OxcaOf 73f b83f71e74e03c008558df3a
i transfer = b ' batanceof = b
recipient Parameters
Q 0x9584bfbe913e75413d4c2 @D I—
amount Q 0x9584bfbe913e75413d4c2f: (5D

123 123

Result & (Pretty Raw
Gas Estimate (

3000000000 uint256

Gas Limit)
6 30420
Tip

< 2500000000

Max Fee

@& 6192511662

‘D RECENT TRANSACTIONS

Authorization

© transfer ® 12/30 18:47:59
0xcadffc26473fcf835b8371e74e03c008558d 3a

p 0x9584b | @ peploy

Signer

Result & @ transfer

[
true o Deploy

1
. & Ropsten Transactions i= A

| Storage

Parameters

Range

0

Event Logs

BLOCK

[EE=== >

FROM
address

= 3000

TO
address

(no data)

VALUE
uint256

- @

Clear

_images/Km-2.png
B Ethereum Studio

File Edit View Application

Keypair Manager

g DO NOT use on mainnet! For development purpose only.
] For convenience in development, the private keys are saved unencrypted.

NAME ADDRESS

(No keypairs)

_images/Km-3.png
B Ethereum Studio

File Edit View Application

Keypair Manager

A DO NOT use on mainnet! For development purpose only.

For convenience in development, the private keys are saved unencrypted.

NAME ADDRESS

(No keypairs)

Create

Close

_images/Tb-19.png
File Edit View Application

n Contract Explorer Network
Oxca0ffc26... Oxca0ffc26... p Ropsten
+ N & <« & Project Settings X <
v testBasic npm >
» build

~ contracts Compilers

Gameltem.sol

Truffle version

Gameltems.sol
GLDToken.sol

v deploys
dev.test 20211229_170607.json Solc version
rinkeby_20211229_185825.json
ropsten_20211230_170532.json soljson-v0.8.0+commit.c7dfd78e.js

» migrations

| coofigieon Cvemen

package-lock.json Istanbul
package.json
README.md Optimizer runs

truffle-config.js

Linter

Solhint s
Editor
Font Family

Hack s

. & Ropsten B Transactions := ABI Storage A Solc (0.8.0) >

_images/Tb-20.png
File Edit View Application

n Contract Explorer Network
Oxca0ffc26... Oxca0ffc26... p Ropsten
+ N & <« & Project Settings X <
v testBasic i i
» build EVM version

~ contracts
Istanbul

“

Gameltem.sol
Gameltems.sol
GLDToken.sol

v deploys
dev.test 20211229_170607.json
rinkeby_20211229_185825.json
ropsten_20211230_170532.json

» migrations Solhint

package-lock.json

Optimizer runs

Linter

package.json Sellie]y
README.md Font Family
truffle-config.js
Hack s
Font Size
13px $

Font Ligatures

Disabled

“

. & Ropsten B Transactions := ABI Storage A Solc (0.8.0) >

_images/Tb-17.png
B Ethereum Studio _ O

File Edit View Application

n Contract Explorer Network
0xca0ffc26.. oxca0ffc26. ~ & Ropsten v
+ N & < Gameltems.sol Project Settings X <+
v testBasic
» build
Gameltem.sol P 1 S 1
Gameltems.sol rOJ eCt ettl ngs
GLDToken.sol M C:\Users\Administrator\Ethereum Studio\testBasic
» deploys
» migrations General
config.json L
. Main file
package-lock.json
package.json ./contracts/Gameltems.sol
README.md
truffle-config.js Smart contract to deploy
./build/contracts/Gameltems.json
Framework
Truffle s
Npm client
npm S
Compilers
. Truffle version
aEEE——

. & Ropsten B Transactions i= ABI Storage /¥ Solc(0.8.0) >_

_images/Tb-18.png
File Edit View Application
n Contract Explorer Network
- - p -
Oxca0ffc26... Oxca0ffc26... Ropsten

+ N & < o Project Settings X <+
v testBasic
» build
v contracts
Gameltem.sol P 1 S 1
Gameltems.sol rOJ eCt Ettl ngs
GLDToken.sol B8 C:\Users\Administrator\Ethereum Studio\testBasic
v deploys
dev.test 20211229_170607.json G enera |
rinkeby_20211229_185825.json

Main file
ropsten_20211230_170532.json
» migrations ./contracts/Gameltems.sol
package-lock.json Smart contract to deploy
package.json

./build/contracts/Gameltems.json

README.md
truffle-config.js
Framework

Truffle

Npm client

npm

Compilers
Truffle version

[
. & Ropsten B Transactions := ABI Storage A Solc (0.8.0) >

_images/Km-4.png
|4
File Edit View Application

Create Keypair x

Keypair info
(Address) 0xfb8485fed1f1b5c0e8881db7dd93a57800c 1754

(Privatekey) 0xa3fcd70d9fc87423df73f1a7353d4fe99adce381bad390370a917557832ea862

nav.xhtml

 Table of Contents

 		
 Welcome to Ethereum Studio documentation!

 		
 Overview

 		
 Installation

 		
 Download

 		
 Install Dependencies

 		
 Docker

 		
 Geth

 		
 Truffle

 		
 Contrast with Web Client

 		
 Create a New Project

 		
 Build contracts

 		
 Keypair Manager with MetaMask

 		
 Development and Custom Network

 		
 QuickStart

 		
 Login web client

 		
 Create an ERC20 project

 		
 Connect to MetaMask Account

 		
 Request Ropsten Faucet

 		
 Build Contracts

 		
 Deploy Contracts

 		
 Check Balance and Transfer

 		
 Project

 		
 Create Project

 		
 Frameworks

 		
 Template

 		
 npm Clients

 		
 Open Project

 		
 Local Projects and Cloud Projects

 		
 Delete Project

 		
 Editor

 		
 Build

 		
 Build Preparation

 		
 Build by Panel

 		
 Build by Command Line

 		
 Check Building Details

 		
 Deploy

 		
 Deploy by Panel

 		
 Deploy by Command Line

 		
 Deploy Preparation

 		
 Check Deploy Transactions

 		
 Project Settings

 		
 General

 		
 Compilers

 		
 Linter

 		
 Editor

 		
 Tool Bar

 		
 New File

 		
 Build

 		
 Deploy

 		
 Script

 		
 Project Settings

 		
 Network

 		
 Local Development

 		
 Geth

 		
 Geth Version Manager

 		
 New Instance

 		
 Node Panel

 		
 Remote

 		
 Mainnet

 		
 Testnets

 		
 Custom Network

 		
 Block Explorer

 		
 Account

 		
 Information

 		
 Transactions

 		
 Transfer

 		
 Faucet

 		
 Ropsten Faucet

 		
 Rinkeby Faucet

 		
 Kovan Faucet

 		
 Contract

 		
 Write Functions

 		
 Parameters

 		
 Gas

 		
 Authorization

 		
 Results

 		
 View Functions

 		
 Parameters

 		
 Results

 		
 Events

 		
 Parameters

 		
 Events Log

 		
 Keypair Manager

 		
 Create Keypair

 		
 Check Keypair

 		
 Delete Keypair

 		
 Import Keypair

 		
 Import MetaMask Mnemonic

 		
 RPC Client

 		
 Supported Faucets

 		
 Ropsten Faucet

 		
 Rinkeby Faucet

 		
 Goerli Faucet

 		
 Kovan Faucet

 		
 Supported Frameworks

 		
 Open Zeppelin

 		
 Hardhat

 		
 Truffle

 		
 Waffle

 		
 Supported Testnets

 		
 Ropsten

 		
 Rinkeby

 		
 Goerli

 		
 Kovan

 		
 Transaction History

 		
 Transaction Detail

 		
 Truffle Migration Script

 		
 ABI Storage

_images/Km-7.png
B Ethereum Studio

File Edit View Application

Import Keypair x

Name

test

Enter the private key / mnemonic you want to import

limb focus card aunt point arrow ugly clever flee salt again game|

Address: 0x4343ac249b15438467e42al1f7t588c22e11d6d2

_images/Lg-1.png
B Ethereum Studio

- [m] X
ﬁ Contract Explorer = Network
(None) 0x5b43a901... == Development

i= My Projects

File Edit View Application

(not logged in)

ab - = Ethereum Studio Web
© GitHub Repo

£= Proiect 2 Report an Issue
a= Frojects -
) L

token

M C:\Users\Administrator\Ethereum Studio\token

= Development H Transactions i= ABI Storage

_images/Km-5.png
B Ethereum Studio

File Edit View Application

Create Keypair x

Name

test

Keypair info

(Address) 0x894a5cb544d52c7437be6eae952d28d962071a8
(Privatelkey) 0x2fa07b55ed4484728e1b7bd8fd753528126707860dcb14ab4c7194548e3cef22

Regenerate from private key

Regenerate from mnemonic

_images/Km-6.png
B Ethereum Studio _ O

File Edit View Application

Keypair Manager x

g DO NOT use on mainnet! For development purpose only.
For convenience in development, the private keys are saved unencrypted.

NAME ADDRESS D Click again to delete

123 & 0x06d0cc088c7ccb6dfldef1b0149596271124a2349 @ .

test 0x4343ac249b15438467e42a1t715818c22e11d6d2

_images/Lg-4.png
B Ethereum Studio

File Edit View Application

ﬁ Project
(None)

HanYouyang

(No description)

= Development H Transactions i= ABI Storage

(No Project)

E

Contract

(None)

Explorer

0x5b43a901...

Network
&8 Development v @
LOGGED IN AS

& HanYouyang

= Ethereum Studio Web

© GitHub Repo

2 Report an Issue

® Log out

_images/Lg-5.png
B Ethereum Studio

File Edit View Application

ﬁ Project ﬁ Contract Explorer E Network
v v v
(None) (None) 0x5b43a901... == Development

LOGGED IN AS
°

HanYouyang & HanYouyang

(No description) = Ethereum Studio Web

© GitHub Repo

J
- e - > Logout

(No Project)

= Development H Transactions i= ABI Storage

_images/Lg-2.png
B Ethereum Studio

File Edit View Application

® (not logged in)
an O
= Projects

token
M C:\Users\Administrator\Ethereum Studio\token

= Development H Transactions i= ABI Storage

E

Contract

(None)

Explorer = Network
0x5b43a901.. == Development
) Login

My Projects

= Ethereum Studio Web

© GitHub Repo

- 2 Report an Issue

_images/Lg-3.png
B Ethereum Studio

File Edit View Application

ﬁ Contract Explorer Network
v v
(None) 0x5b43a901... == Development

LOGGED IN AS

& HanYouyang

HanYouyang

(No description) = Ethereum Studio Web

© GitHub Repo

2 Report an Issue

- O Cloud - ® Log out

token
M C:\Users\Administrator\Ethereum Studio\token

= Development H Transactions i= ABI Storage

_images/Lg-6.png
H ObsidianLabs / EthereumStudio (Public ®Watch 21 ~ % Fork 31 Y7 Star 210~

<> Code ® Issues (2 17 Pull requests (*) Actions " Projects L wiki () Security |~ Insights

Thle Assignees

No one assigned

Write Preview H B I i=
Labels
Leave a comment None yet
Projects
None yet
Milestone

No milestone

Attach files by dragging & dropping, selecting or pasting them.

Linked pull requests B \Windows

) HE"RELISNE Windows,
Styling with Markdown is supported Successfully merging a pull request may close
this issue.

_images/Lg-7.png
Signed in as
HanYouyang

'\Cﬁ?' Hello, world!

Your profile
Your repositories
Your codespaces
Your projects
Your stars

Your gists

Upgrade
Feature preview
Help

Settings

_images/Nw-1.png
B Ethereum Studio
File Edit View Application

A Project ﬁ Contract
i testBasic (None)

Ethereum Instances for Development

NAME NODE VERSION

(No Geth instance)

-. = Development H Transactions i= ABI Storage

Explorer
0x5b43a901...
£ Geth Version Manager _

HEIGHT

_images/Nw-12.png
B Ethereum Studio

File Edit View Application

New Custom Network Connection

Name

test]

URL of node rpc

https://ropsten.infura.io/v3/11c4d53b53154c9d89041a05e0f5eec2

I P — AAdA Nataimel

_images/Nw-13.png
B Ethereum Studio

File Edit View Application

New Custom Network Connection

Name

test

URL of node rpc

https://ropsten.infura.io/v3/9c974bfb78fd43779ac5d3bb50c72a02

Network info
{

"name": "ropsten”,
"chainId": 3,

"ensAddress": "0x00000000000C2E074eC69A0dFb2997BA6C7d2ele"
}

_images/Nw-10.png
B Ethereum Studio
File Edit View Application

n Project ﬁ Contract Explorer
i testBasic (None) 0x5b43a901...

Custom Network Blocks

Node URL

[# Custom K Transactions i=ABI Storage

_images/Nw-11.png
B Ethereum Studio

File Edit View Application

Custom Network

RPC URL

(No Custom Networks)

_images/Nw-16.png
B Ethereum Studio

File Edit View Application

A Project n Contract Network
Ui testBasic h (None) v n p Ropsten
0x5b43...9fa3 x <
c Q 0x5b43a9013306€a090c9f76ab80730e4d96a59fa3 w Q)E

Account Information Faucet

3 Balance (OETH </> Code (None)

' # Nonce

Transactions
TIME BLOCK TX HASH TO VALUE GAS USED

No Transactions Found

& Ropsten B Transactions := ABI Storage

_images/Nw-17.png
B Ethereum Studio
File Edit View Application

A Project
Ui testBasic

0x5b43 ... 9fa3 x <+

n Contract

0x6b35c451...

Network
v p Rinkeby

G

(6l O 0x5b4329013306ea090c9f76ab80730e4d96a59fa3 N © &

Account

3 Balance

Nonce

Transactions
TIME BLOCK

12/22 11:24:24 9856576

12/22 10:26:37 9856345

12/20 18:04:12 9846659

12/2017:02:10

12/20 16:26:52 9846270

12/20 16:12:52 9846214

12/20 16:12:52 9846214

12/70 1A-10-N7

& Rinkeby

QRARINR

Bl Transactions

TX HASH

0x16b7a3fe4l ... 153e07

0x6028cb0@9%ae ... 09e777

0x84b03e5bba ... fca711

0xa9e38e12f0 ... 4c3a31

Oxefe96e78e4 ... c5ele7

0x3bc8658739 ... 9f91b8

0x3bc8658739 ... 9T91b8

Avfafh770rda
i= ABI Storage

r7RFAR

Information

</> Code

FROM

0x5b43a90133 ... a59fa3

0x5b43a90133 ... ab9fa3

0x5b43a90133 ... a59fa3

0x5b43a90133 ... ab9fa3

0x5b43a90133 ... a59fa3

0x5b43a90133 ... ab9fa3

0x5b43a90133 ... a59fa3

MvIMhARA1AMM 1R4R2

TO

0x6b35c451ee ... 1010b6

0x6b35c451ee ... 1010b6

0xf4e94e1b58 ... d1cc06

0xalebb58985 ... ce7276

0x1d0a849f0 ... 82e450
0x5b43a90133 ... ab9fa3

0x5b43a90133 ... ab9fa3

MAvEhA20M13 ak0fa

(None)

GAS USED FEE

27,620 27,620 Gwei

1,222,418 0.003 ETH

0.003 ETH

0.003 ETH

0.003 ETH

52,500 Gwei

52,500 Gwei

21 ANN Guwiai

_images/Nw-14.png
B Ethereum Studio

File Edit View Application

Custom Network

RPC URL

https://ropsten.infura.io/v3/11c4d53b53154c9d... ' Connect

New Connection

_images/Nw-15.png
B Ethereum Studio

File Edit View Application

A Project n Contract Explorer
i testBasic h (None) v 0x5b43a901... n @
Custom Network Blocks

u Node URL * https://ropsten.infura.io/v3/11c4d53b53154c9d89041a05e0f5eec2 Block Number 11712209

| Block Time December 29th, 18:05:33
N

{ Difficulty 11512744585
}

)

C

[# Custom K Transactions i=ABI Storage
httne' //roncten infiira in/vV11cAAdS2RRST184,9A4 Connect T

_images/Nw-19.png
H.

6

B Ethereum Studio
File Edit View Application

A Project
Ui testBasic

0x5b43 ... 9fa3 x

0x6b35 ... 10b6 +

n Contract

0xb627ec4b...

"9 b 0

Network

Rinkeby

G

(6l O 0x5b4329013306ea090c9f76ab80730e4d96a59fa3 N © &

3 Balance

Nonce

Transactions

TIME BLOCK

12/22 11:24:24 9856576

12/22 10:26:37 9856345

12/20 18:04:12 9846659

12/2017:02:10

12/20 16:26:52 9846270

12/20 16:12:52 9846214

12/20 16:12:52 9846214

12/20 16:10:07 9846203

& Rinkeby

Bl Transactions

TX HASH

0x16b7a3fe4l ... 153e07

0x6028cb0@9%ae ... 09e777

0x84b03e5bba ... fca711

0xa9e38e12f0 ... 4c3a31

Oxefe96e78e4 ... c5ele7

0x3bc8658739 ... 9f91b8
0x3bc8658739 ... 9T91b8

0xf9fb779c4e ... c75T4b

i= ABI Storage

</> Code

FROM

0x5b43a90133 ... a59fa3

0x5b43a90133 ... ab9fa3

0x5b43a90133 ... a59fa3

0x5b43a90133 ... ab9fa3

0x5b43a90133 ... a59fa3

0x5b43a90133 ... ab9fa3

0x5b43a90133 ... a59fa3

0x31b98d1400 ... 184523

TO

0x6b35c451ee ... 1010b6

0x6b35c451ee ... 1010b6

0xf4e94e1b58 ... d1cc06

0xalebb58985 ... ce7276

0x1d0a849f0 ... 82e450
0x5b43a90133 ... ab9fa3
0x5b43a90133 ... ab9fa3

0x5b43a90133 ... ab9fa3

GAS USED

27,620

1,222,418

(None)

FEE

27,620 Gwei

0.003 ETH

0.003 ETH

0.003 ETH

0.003 ETH

52,500 Gwei

52,500 Gwei

21,000 Gwei

_images/Nw-2.png
B Ethereum Studio

File Edit View Application

Geth Version Manager

VERSION CREATED

(No Geth installed)

I Install v

AVAILABLE VERSIONS
v1.10.14
v1.10.14-amd64
v1.10.13
v1.10.13-arm64
v1.10.13-amd64
v1.10.12
v1.10.12-arm64
v1.10.12-amd64
v1.10.11
v1.10.11-arm64
v1.10.11-amd64

Cancel

_images/Nw-18.png
B Ethereum Studio

File Edit View Application

A Project n Contract Network
v v
8 testBasic xb627eckb... & Rinkeby

0x5b43 ... 9fa3 0x6b35 ... 10b6 X <
(6l O 0x6b35c451eelf65e3a9c0e375ffe4adchab1010b6) O

« Account Information

@ Balance (OETH </> Code Hash 0x956e00b4711e6a4116a6ab55889ac98287d4e2bd09b40fb24e87 ce3ae23fbe7f
Ji
" # Nonce 1
Transactions
TIME BLOCK TX HASH FROM TO VALUE GAS USED FEE
12/2211:24:24 9856576 0x16b7a3fedl ... 153e07 0x5b43a90133...a59fa3 Ox6b35c45lee ... 1010b6 OETH 27,620 27,620 Gwei
12/2210:226:37 9856345 0x6028cb09ae ... 09777 0x5b43a90133 ... a59fa3 T ————— OETH 1,222,418 0.003 ETH
Ox6b35c451ee ... 1010b6
i
)
.

Bl Transactions

& Rinkeby i= ABI Storage

_images/Nw-4.png
B Ethereum Studio

File Edit View Application

Geth Version Manager

VERSION CREATED siz @ Click again to uninstall

v1.10.14 December 23, 2021 50.

Cancel

_images/Nw-5.png
B Ethereum Studio
File Edit View Application

A Project ﬁ Contract
i testBasic (None)

Ethereum Instances for Development

NAME NODE VERSION

(No Geth instance)

= Development H Transactions i= ABI Storage

Explorer
0x5b43a901...
£ Geth Version Manager @ -

HEIGHT

_images/Nw-20.png
File Edit View Application 3

Transfer x

Amount

0.1

Q 0xe16685a704eafebd5cda60eg9l2eact7f f5ec568 - -

—_—

o

-

o

. o I e ———

_images/Nw-3.png
B Ethereum Studio

File Edit View Application

.. Downloading Geth v1.10.14...

docker pull ethereum/client 10.14

596f1c3 f3: Extracting 2.818MB/2.818MB
ab607b9781985: Verifying Checksum
T03283793a03: Download complete

_images/Nw-8.png
B Ethereum Studio

File Edit View Application

n Project ﬁ Contract Explorer
v
i testBasic (None) 0x5b43a901...

Ethereum Instances for Development =

NAME NODE VERSION CHAIN HEIGHT

test - fov1.10.14 dev (o)]

= node |

. docker run -it --rm --name eth-test-vi 10 14 -p 8545:8545 -v eth-test:/data -w /data ethereum/client-go:v1.10.14 --datadir=/data --dev --dev.period=1 --nousb --htt
¢ p --http.addr=0.0.0.0 --http.corsdomain " ==password=pwd

F0 [12-29]08:57:57.123] Starting Geth in ephemeral dev mode...

~0 [12-29]08:57:57.125] Maximum peer count ETH=50 LES=0 total=50

~0 [12-29]08:57:57.126] Smartcard socket not found, disabling err="stat /run/pcscd/pcscd.comm: no such file or directory"

RN [12-29]|08:57:57.126] Option nousb is deprecated and USB is deactivate efault. Use --usb to enable

F0 [12-29]08:57:57.130] Set global gas cap cap=50, [0]

~0 [12-29]08:57:57.868] Using developer account address=0x5b43A9013306EA090C9T76AB80730E4D96a59Ta3

=

~0 [12-29]08:57:57.868] Allocated cache and file handles database=/data/geth/chaindata cache=512.00MiB handles=524,288
- ~0 [12-29]08:57:57.950] Opened ancient database database=/data/geth/chaindata/ancient readonly=false
~0 [12-29]08:57:57.951] Freezer shutting down
~0 [12-29]08:57:57.952] Allocated trie memory caches clean=154.00M1B dirty=256.00MiB
F0 [12-29]08:57:57.952] Allocated cache and file handles database=/data/geth/chaindata cache=512.00M1B handles=524,288
~0 [12-29]08:57:58.044] Opened ancient database database=/data/geth/chaindata/ancient readonly=false
F0 [12-29]08:57:58.044] Writing custom genesis block
F0 [12-29]08:57:58.047] Persisted trie from memory database nodes=13 size=1.90KiB time="288.522ps" gcnodes=0 gcsize=0.00B gctime=@s livenodes=1 livesize
F0 [12-29]08:57:58.048] Initialised chain configuration config="{ChainID: 1337 Homestead: ©® DAO: <nil> DAOSupport: false EIP150: @ EIP155: @ EIP158: 0 Byz
antium: @ Constantinople: @ Petersburg: @ Istanbul: @, Muir Glacier: 0, Berlin: @, London: @, Arrow Glacier: <nil>, MergeFork: <nil>, Engine: clique}"
~0 [12-29]08:57:58.048] Initialising Ethereum protocol network=1337 dbversion=<nil>
~0 [12-29]08:57:58.049] Loaded most recent local header number=0 hash=5527ec..13b788 td=1 age=52y9mo8h
~0 [12-29]08:57:58.049] Loaded most recent local full block number=0 hash=5527ec..13b788 td=1 age=52y9mo8h

~0 [12-29]08:57:58.049] Loaded most recent local fast block number=0 hash=5527ec..13b788 td=1 age=52y9mo8h
RN [12—29|@8:57:58.050] Failed to load snapshot, regenerating err="missing or corrupted snapshot"

=
======>====3 ZZZZZZZZZZZ)ZZZ

~0 [12-29]08: Rebuilding state snapshot

~0 [12-29]08: Resuming state snapshot generation root=3c3543. .b3ecc2 accounts=0 slots=0 storage=0.00B elapsed="692.808us"
~0 [12-29]08: Regenerated local transaction journal transactions=0 accounts=0

~0 [12-29]08: Generated state snapshot accounts=10 slots=0 storage=412.00B elapsed=1.547ms

~0 [12-29]08: Gasprice oracle is ignoring threshold set threshold=2

0 [12-29]08: Stored checkpoint snapshot to disk number=0 hash=5527ec..13b788

. = Development H Transactions i= ABI Storage

_images/Nw-6.png
B Ethereum Studio

File Edit View Application

New Instance (dev)

Instance name

test]

Geth version

v1.10.14

Miner

0x5b43a9013306ea090c9f76ab80730e4d96a59fa3

_images/Nw-7.png
B Ethereum Studio
File Edit View Application

A Project ﬁ Contract
i testBasic (None)

Ethereum Instances for Development

NODE VERSION

fev1.10.14

= Development H Transactions i= ABI Storage

Explorer
0x5b43a901...

= Geth Version Manager @ | =+ New Instance

HEIGHT

_images/Pr-10.png
BN X
Network
p Ropsten

® loy_contracts.js

&« > v A B > Administrator > Ethereum Studio > P

IR (R =L

* HRiEAE
@ testBasic 2021/12/29 11:08

@ OneDrive - Pers)
M testCoin 2021/12/29 11:04
& WPSKIE BB testEmpty 2021/12/29 11:01

W e Bl testERC20 2021/12/29 11:06

® wa
REs
B iy
L TE
O=5

B =S

M testMetacoin 2021/12/29 11:10

BB testTransfer 2021/12/28 15:42

& Ropsten B Transactions i= ABI Storage @ Truffle (v5.4.3) ¥ Solc (truffle-config.js) d—

_images/Pr-11.png
B Ethereum Studio

File Edit View Application

n Contract Explorer Network
v v
h (None) 0x5b43a901... p Ropsten

o MetaCoin.sol Migrations.sol X ConvertLib.sol 1_initial_migration.js 2_deploy_contracts.js

+ Create Project...
1 // SPDX-License-Identifier: MIT

Open Project... 2 pragma solidity >=0.4.25 <0.7.0;
3
LOCAL PROJECTS 4 contract Migrations {
) address public owner;
B token _A 6 uint public last_completed _migration;
7
testEmpty 8 modifier restricted() {
. i 9 if (msg.sender == owner H
testCoin L . } (msg)
ts.js 1
testERC20 .
2 constructor() public {
testBasic 3 owner = msg.sender;
4 }
5
) function setCompleted(uint completed) public restricted {
REMOTE PROJECTS 7 last_completed_migration = completed;
8 }
B tokenTransfer 9}
20

. & Ropsten B Transactions i= ABI Storage @ Truffle (v5.4.3) >~

LaS L_LUMPLELEU_ MUYl aLivil = LUlPLELEU;

A Solc (truffle-config.js)

_images/Nw-9.png
B Ethereum Studio

File Edit View Application

+ A
v testBasic

» build

¥ contracts

o

& <>

Gameltem.sol
Gameltems.sol

» deploys

» migrations
config.json
package-lock.json

package.json
README.md
truffle-config.js

Transactions

Gameltems.sol

1
2
3
4
)
6
7
8

& Project

truffle-config.js

// contracts/GLDToken.sol
// SPDX-License-Identifier:
pragma solidity "0.8.0;

MIT

import "@openzeppelin/contracts/token/ERC20/ERC20.so0l";

contract GLDToken is ERC20 {
constructor(uint256 initialSupply)
_mint(msg.sender, initialSupply);
}
}

> Compiling .\contracts\GameItem.sol
> Compiling .\contracts\GameItems.sol

> Artifacts written to C:\Users\Administrator\Ethereum Studio\testBasic\build\contracts

> Compiled successfully using:
- solc: 0.8.0+commit.c7dfd78e.Emscripten.clang

>

_ = Development H H
e A e

i= ABI Storage

package.json

Network
== Development

ETHEREUM

Contract

(None)

Explorer

0
b 0x5b43a901...

G

Gameltem.sol

& Ropsten
& Rinkeby
& Gorli

& Kovan

ERC20("Gold", "GLD") {

& Mainnet

OTHERS

[# Custom

/¥ Solc (0.8.0)

_images/Pr-1.png
B Ethereum Studio - [m] X

File Edit View Application

Create Project...

Open Project...

n Contract Explorer Network D
v v v
h (None) 0x5b43a901... p Ropsten \@9 7

HanYouyang

LOCAL PROJECTS (No description)

B token
REMOTE PROJECTS

ocal
B tokenTransfer - -

tokenTransfer

& HanYouyang/tokenTransfer

& Ropsten B Transactions := ABI Storage

_images/Pr-3.png
BRIE AR

&« > v A B > Administrator > Ethereum Studio

HER- EENHER

=t (R =L
o BRI

@ testTransfer 2021/12/28 15:42
@ OneDrive - Pers

& WPSRE:

W B
® wa
REs
B iy
L TE
O=5

B =S

- T . VRN~ « N W——
<

s 2. [testTransfer

npm yarn cnpm

_images/Pr-4.png
B Ethereum Studio - [m] X

File Edit View Application
n Contract Explorer Network
- - -
h (None) 0x5b43a901... p Ropsten
o] Main.sol X <

1 pragma solidity >=0.5.0; =
2

v contracts

contract Main

¥ migrations
1.deploy.js
config.json
package-lock.json
package.json
README.md
truffle-config.js

& Ropsten B Transactions := ABI Storage A Solc(0.6.12) >—

_images/Pr-12.png
+ Create Project. & ERC20s0l Project Settings * hardhat.configjs package json package-lock.json README.md +

B2 Open Project... EVM version

LOCAL PROJECTS Istanbul

my-nft !
o Optimizer runs

/]
/]
B contracts-main
B testTypechain
/]

FeNFT Linter
B ReNFT Solhint .
Open Containing Folder Editor
REMOTE PR(
‘Open in Terminal Font Family |
(None)
Remove Hack + |
! Font Size
13px s
Font Ligatures
Disabled =
- B Development B Transactions Bl Storage A solc(08.0) >—

_images/Pr-2.png
B Ethereum Studio

File Edit View Application

Create a New Project

(] oo

Project location

Choose...

I Project name

€ testTransfer

Template

Coin v

Framework Truffle version

- Hardhat Waffle Dockerized Truffle v5.4.6 v

Npm client

_images/Pr-5.png
B Ethereum Studio

File Edit View Application

n Contract Explorer Network
v v
h (None) 0x5b43a901... p Ropsten

+ N & < 3 Coin.sol X <+

testCoin pragma solidity >=0.5.0 <0.7.0;
~ contracts contract Coin {

address public minter;
~ migrations mapping (address => uint) private balances;

1.deploy.js event Sent(address from, address to, uint amount);

config.json

package-lock.json constructor() public {
minter = msg.sender;

package.json }
README.md
truffle-config.js function mint(address receiver, uint amount) public {
reguire(msg.sender == minter);

reguire(amount < 1e60);

balances[receiver] += amount;

}

function send(address receiver, uint amount) public {
require(amount <= balances[msg.sender], "Insufficient balance.");
balances[msg.sender] -= amount;
balances[receiver] += amount;
emit Sent(msg.sender, receiver, amount);

}

function balanceOf(address tokenOwner) public view returns(uint balance){
return balances[tokenOwner];
}
}

& Ropsten B Transactions := ABI Storage A Solc(0.6.12) >—

_static/file.png

_images/Pr-6.png
B Ethereum Studio

File Edit View Application

ﬁ Contract b Explorer - p Network -
(None) 0x5b43a901... Ropsten
+ N & < & ERC20.s0l X <+

testERC20 // SPDX-License-Identifier: MIT

v contracts

-

pragma solidity "0.8.0;
Context.sol
import "./IERC20.sol";

import "./IERC20Metadata.sol";

IERC20.s0l import "./Context.sol";

|IERC20Metadata.sol

~ migrations o
. @dev Implementation of the {IERC20} interface.
1.deploy.js

config.json This implementation is agnostic to the way tokens are crieated. This means
that a supply mechanism has to be added in a derived corftract using {_mint}.

package-lock.json
For a generic mechanism see {ERC20PresetMinterPauser}.

package.json
README.md
truffle-config.js

TIP: For a detailed writeup see our guide
https://forum.zeppelin.solutions/t/how-to-implement-erc0-supply-mechanisms/226[How
to implement supply mechanisms].

CO~NOUESE WNRFEPEOWONOO U WN

We have followed general OpenZeppelin guidelines: functilons revert instead
of returning “false' on failure. This behavior is nonetheless conventional
and does not conflict with the expectations of ERC20 applications.

Additionally, an {Approval} event is emitted on calls tq {transferFrom}.
This allows applications to reconstruct the allowance fgr all accounts just
by listening to said events. Other implementations of tHe EIP may not emit
these events, as it isn't required by the specification.

Finally, the non-standard {decreaseAllowance} and {incrdgaseAllowance}
functions have been added to mitigate the well-known isques around setting
allowances. See {IERC20-approve}.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

27
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;

Bl Transactions /¥ Solc(0.8.0) >_

& Ropsten

i= ABI Storage

_static/plus.png

_static/minus.png

_images/Tb-9.png
B Ethereum Studio _ O

File Edit View Application

n Contract Explorer Network
0x519dbfb8... test - @ Ropsten v
o Gameltems.sol GLDToken.sol package.json ERC20.json Gameltem.sol GLDToken.json X <
1 - -
2 “contractName": "GLDToken",
3 "abi": [
v contracts 4 {
Address.json 5 "U{IPUtS": [
. 6
Context.json 7 "{nternalType": "uint256",
Counters.json 8 "name": "initialSupply",
ERC1155.json 9 “type": "uint256"
ERC165.json ?] }
I’
ERC20.json 2 "stateMutability": "nonpayable",
ERC721.json 3 “type": "constructor”
. 4
ERC721URIStorage.json 5 I’
Gameltem.json 6 "anonymous": false,
Gameltems.json 7 "U{IPUtS": [
8
~ GwWlokenjon “tndexed”: true,
IERC1155.json New File "internalType": "address",
IERC1155MetadataURLj New Folder “name”: “owner",
IERC1155Receiver.json type': "address
) Open }
IERC165.json {
IERC20.json Deploy "indexed": true,
. "internalType": "address",
[ER 2T s e e Open Containing Folder "name": "spender",
IERC721.json " Dg C !
] 5 Open in Terminal type address
IERC721Metadata.json %’
IERC721Receiver.json Copy Path “indexed": false,
Strings.json Rename ::inte:na}Type"I:I "uint256",
v contracts name": "value",
Delete " ||: "oos "
Gameltem.sol . } type uint2se

. & Ropsten B Transactions := ABI Storage

/¥ Solc(0.8.0) >_

_images/Tb-8.png
B Ethereum Studio _ O

File Edit View Application

n Contract Explorer Network
0x519dbfb8... test - @ Ropsten v
+ N & <« o Gameltems.sol GLDToken.sol package.json ERC20.json Gameltem.sol GLDToken.json X <
v testBasic 1 : -
. 2 “contractName": "GLDToken",
v build Wb
3 abi": [
v contracts 4 {
Address.json 5 "U{IPUtS": [
. 6
Context.json 7 "{nternalType": "uint256",
Counters.json 8 "name": "initialSupply",
ERC1155.json 9 “type": "uint256"
ERC165.json 2] }
I’
ERC20.json 2 "stateMutability": "nonpayable",
ERC721.json 3 “type": "constructor”
. 4
ERC721URIStorage.json 5 I’
Gameltem.json 6 "anonymous": false,
Gameltems.json 7 "U{IPUtS": [
8
o "indexed": true,
IERC1155.json New File "internalType": "address",
"name": "owner"
(EA SN New Folder "type": "addres;"
IERC1155Rece }
IERC165.json OPen {

IERC20.json "indexed": true,
Deploy "internalType": "address",
IERC20Metad

P "name": "spender"

IERC721.json Open Containing Folder "type": "aZdress“’
IERC721Metac ©Open in Terminal },
. {

IERC721Receiv Copy Path "indexed": false,

Strings.json "internalType": "uint256",
© @EiEES Rename "name": "value",
Gameltem.sol ~ Delete } “typets fuint2set
- - e -

. & Ropsten B Transactions := ABI Storage A Solc (0.8.0) >

_images/intro-2.png
Features

Cloud
Projects
Local
Truffle
Framework Hardhat
Choices
Waffle
. by Framework
Build
by Command Line
by Framework
Deploy

by Command Line
Login Account by Github
Auto-Log Address by MetaMask
Blocke Explorer
Contract
Developemt

Testnets and

Network Mainnet

Custom

Web
Yes
No
No
No
No

Only Truffle
No
Only Truffle

No
Yes
Yes
Yes
Yes

No

Yes

No

Desktop
Yes
Yes
Yes
Yes
Yes

Truffle, Hardhat, Waffle and
Dockerized Truffle

Yes

Truffle, Hardhat, Waffle and
Dockerized Truffle

Yes
Yes
No
Yes
Yes
Yes

Yes

Yes

_images/intro-1.png
Ethereum Studio

i Project Explorer Network S
Rid test-project Build Project Successful local-test-key... == Development
Please find the generated ABI and bytecode in

N o
+ »~ & SRELCEENIR (¢ build/contracts folder.

Build Project
» puild
» contracts
README.md “@openzeppelin/contracts/token/ERC1155/ERC1155.501" ;
config.json
GameItems ERC1155 {
GOLD = 0;
. SILVER = 1;
truffle-config.js THORS_HAMMER = 2;
SWORD = 3;
SHIELD = 4;

package-lock.json
package.json

() ERC1155("https://game.example/api/item/{id}.json") {
_mint(msg.sender, GOLD, 10**18, "");
_mint(msg.sender, SILVER, 10**27, "");
_mint(msg.sender, THORS_HAMMER, 1, "");
_mint(msg.sender, SWORD, 10%**9, "");
_mint(msg.sender, SHIELD, 10**9, "");
}

& Project

> Compiling @openzeppelin/contracts/utils/introspection/ERC165.s0l
> Compiling @openzeppelin/contracts/utils/introspection/IERC165.s0l
> Artifacts written to /Users/eyguan/Ethereum Studio/test-project/build/contracts
> Compiled successfully using:
- solc: 0.8.0+commit.c7dfd78e.Emscripten.clang

>|

| [Development Kl Transactions i=ABI Storage @ Truffle (v5.1.61) /™ Solc (0.8.0) &

_images/Bs-6.png
| B? Ethereum Studio

File Edit View Application

ﬁ Contract Explorer = Network " '
v v v -
(None) 0x5b43a901... == Development

o] Gameltems.sol GLDToken.sol X <

// contracts/GLDToken.sol
// SPDX-License-Identifier: MIT
pragma solidity "0.8.0;

v token

v contracts
Gameltem.sol

Gameltems.sol import "@openzeppelin/contracts/token/ERC20/ERC20.s0l";

contract GLDToken is ERC20 {
constructor(uint256 initialSupply) ERC20(“Gold", “GLD") { |
_mint(msg.sender, initialSupply);

¥ migrations New File

1.deploy.js New Folder

NP owoo~NoOouUu s wWNE

. }
config.json }
. Open
package-lock.js
package.json | Com
README.md .
. Open Containing Folder
truffle-config.js
Open in Terminal
Copy Path
Rename
Delete
= Development H Transactions i= ABI Storage /¥ Solc(0.8.0) >_

r— TRE Fdr

_images/Bs-7.png
B Ethereum Studio

File Edit View Application

A Project n Contract Explorer
& token B oo v 0x5b43a901... &
Ethereum Instances for Development £ Geth Version Manage

ETHEREUM
NAME NODE VERSION CHAIN HEIGHT

(No Geth instance) & Ropsten

& Rinkeby

& Gorli

& Kovan

& Mainnet

OTHERS

[# Custom

= node |

. = Development H Transactions i= ABI Storage

_images/Bs-4.png
| B? Ethereum Studio

File Edit View Application

Create a New Project

(] oo

Project location

Choose...

Project name

testTransfer

Template Open Zeppelin Version

Basics - ERC20, ERC721 & ERC1155 (v3.... (GRenizeppein) ~ v4.2.0

Framework Truffle version

- Hardhat Waffle Dockerized Truffle v5.4.6

Npm client

\ZYNCAYZerz1ImEAISS IR Il

_images/Bs-5.png
ﬁ (None) -

Create a New Project

Empty Project
Coin

ERC20 Token

|;| Local d OPEN ZEPPELIN

TRUFFLE

Metacoin

Basics - ERC20, ERC721 & ERC1155 (v3.... (GRenizeppein) ~

Framework

- Hardhat Waffle Dockerized Truffle

Npm client

>~ O . -

v4.2.0

Truffle version

v5.4.6

Choose...

v

Open Zeppelin Version

== Development

B3 Open

_images/C-1.png
B Ethereum Studio _ O

File Edit View Application

A Project Explorer Network
<> . v p 4
testBasic test Ropsten

0xcalf ...df3a x <

(6l O OxcaOf 73f b83f71e74e03c008558df3a
® atlowance -~ b & Approval = >
WRITE FUNCTIONS Parameters Parameters
approve owner Range
Q - Clear
decreaseAllowance
. spender
increaseAllowance P Event Logs
Q
BLOCK OWNER SPENDER VALUE
address address uint256
Gas Limit (None)
(o}
Tip
$
[4
Max Fee
é

. Authorization

Signer

» 0x9584bfbe913e75413d4c2... (EED

Result

(None)

. & Ropsten B Transactions := ABI Storage

_images/Qk-1.png
(not logged in)
ab

£2 Projects

B Transactions

(No Project)

Contract
(None)

-

Q

Explorer
0x0a9%aa977...

Network
é Rinkeby v E

£2 My Projects

& Desktop App
© GitHub Repo

@ Report an Issue

& Windows
FE"RELAME Windows,

_images/Qk-10.png
n Contract Explorer Network
Oxcadffc26.. 0xCadffc26... & Ropsten
o] Main.sol X <
1 pragma solidity >=0.5.0; =
2
a 3 contract Main
Main.sol 4

» migrations

config.json
package-lock.json
package.json
README.md
truffle-config.js

. & Ropsten B Transactions i= ABI Storage /¥ Solc(0.6.12) >_

_images/Pr-8.png
B Ethereum Studio

File Edit View Application
n Contract Explorer Network
-
h (None) 0x5b43a901... p Ropsten
+ N & 3 MetaCoin.sol Migrations.sol X ConvertLib.sol +

testMetacoin // SPDX-License-Identifier: MIT

v contracts pragma solidity >=0.4.25 <0.7.0;
ConvertLib.sol : contract Migrations {
MetaCoin.sol address public owner;

uint public last_completed migration;

~ migrations modifier restricted() {
1_initial_migration.js if (msg.sender == owner) _;

2_deploy_contracts.js }

v test constructor() public {
metacoin.js owner = msg.sender;

TestMetaCoin.sol }
config.json function setCompleted(uint completed) public restricted {
LICENSE last_completed_migration = completed;

}

truffle-config.js }

. & Ropsten Bl Transactions

c———— e Jm e e s =gy

i= ABI Storage @ Truffle (v5.4.3) ¥ Solc (truffle-config.js) d—

_images/Pr-9.png
B Ethereum Studio

File Edit View Application

o

+ Create Project...

LOCAL PROJECTS

B token I
B testEmpty
B testCoin 1js
R ts.js
B testERC20
B testBasic

REMOTE PROJECTS

B tokenTransfer

Bl Transactions

& Ropsten

MetaCoin.sol

@ LVLONOOUE,WNELR®O®WNOUDNWN

i= ABI Storage

Migrations.sol X

// SPDX-License-Identifier: MIT
pragma solidity >=0.4.25 <0.7.0;

contract Migrations {
address public owner;

E

uint public last_completed migration;

modifier restricted() {
if (msg.sender == owner) _;

}

constructor() public {
owner = msg.sender;

}

Contract

(None)

ConvertLib.sol

Explorer

0x5b43a901...

1_initial_migration.js

function setCompleted(uint completed) public restricted {
last_completed_migration = completed;

}
}

Network
- p etwor
Ropsten

2_deploy_contracts.js

@ Truffle (v5.4.3)

A Solc (truffle-config.js)

P

_images/Bs-2.png
B Ethereum Studio _ O

File Edit View Application

Welcome to Ethereum Studio

Ethereum Studio is a graphic IDE for developing smart contracts on the Ethereum blockchain. To
get started, please install the prerequisite tools for Ethereum Studio.

> ocer startDocker
Docker version 20.10.10, build b485636

@ Geth in Docker

Ethereum node built into a docker image.

Need Docker

@ Truffle in Docker

The library used to create and compile a project.

Need Docker

Skip

_images/Qk-13.png
Deploy Contract ERC20 x
Compiled contract (compiler output JSON)
ERC20.json v

Constructor Parameters

name_

test

UTF8

symbol_
TEST

totalSupply

UTF8

123 3000000000

_images/Bs-3.png
E? Ethereum Studio

File Edit View Application

Welcome to Ethereum Studio

Ethereum Studio is a graphic IDE for developing smart contracts on the Ethereum blockchain. To
get started, please install the prerequisite tools for Ethereum Studio.

@ Docker
Started

Docker version 20.10.11, build dea9396
@ Geth in Docker

Installed
Installed: v1.10.14
@ Truffle in Docker

Installed

Installed: vs.4.3

_images/Qk-14.png
LY

HanYouyang/tokenTransfer

+ N & <

ERC20.sol

Deploy Contract ERC20

symbol_

TEST

totalSupply
123 3000000000

Signer

P 0x0a9%9aa9771e347d6169786ecbe19db71119¢c9b7b6

UTF8

UTF8

han ~

Gas | BxBa90a0771e347d6160786ecke 0b1110c0b7b6 @B

@ max fee per gas

© | Default: 1,000,000 = max priority fee pe

Ropsten

]
o

_images/Qk-11.png
+ N & <
v tokenTransfer
v build
» contracts
¥ contracts
Context.sol

IERC20.s0l
IERC20Metadata.sol
» migrations
» scripts
READMD.md
README.md
config.json
truffle-config.js

. & Ropsten E Transactions

n Contract 9 Explorer

v

(None) 0x0a9aa977...
e & README.md & IERC20.s0l > ERC20.s0l X <+
1 // SPDX-License-Identifier: MIT
2
3 pragma solidity "0.8.0;
4
5 import "./IERC20.sol";
6 import "./IERC20Metadata.sol";
7 import "./Context.sol";
8
9 v /*x%
10 * @dev Implementation of the {IERC20} interface.
11 *
12 * This implementation is agnostic to the way tokens are created. This means
13 * that a supply mechanism has to be added in a derived contract using {_mint}.
14 * For a generic mechanism see {ERC20PresetMinterPauser}.
*
*

/¥ Compiler

solcjs --bin ./contracts/ERC20.sol
Warning: This declaration shadows an existing declaration.
--> ,/contracts/ERC20.s0l1:55:5:

I
55 | uint256 totalSupply

YV V V.V V.V V.V VVVVVVVVVVN

Note: The shadowed declaration is here:
--> . /contracts/ERC20.s01:97:3:

97 | function totalSupply() public view virtual override returns (uint256) {
| ~ (Relevant source part starts here and spans across multiple lines).

i= ABI Storage

Network 12 |
Ropsten

/" Solc (0.8.0) .

_images/Bs-1.png
docker
Containers / Apps
Images

Volumes

@ Dev Environments-

Images on disk

LOCAL REMOTE REPOSITORIES

Q

NAME
docker/getting-started
ethereum/client-go

obsidians/truffle

3images

In Use only

TAG IMAGE ID

latest eb9194091564

v1.10.14 ddccf5b826e8

v5.4.3 4de9f861abd5

Upgrade Q :’ﬁ

Total size: 590.17 MB

CREATED
about 2 months ago
8 days ago

5 months ago

9 hanyouyang93

IN USE

SIZE

28.53 MB

50.93 MB

510.71 MB

UNUSED

_images/Qk-12.png
LY

+

HanYouyang/tokenTransfer

R L

ERC20.sol

N7...

Deploy Contract ERC20 x

Compiled contract (compiler output JSON)

ERC20.json v

Context.json

IERC20.json
IERC20Metadata.json

UTF8

symbol_

TEST

UTF8

totalSupply

anm i~

&

Ropsten

_images/Qk-15.png
Deploy Contract ERC20 x

UTF8
symbol_
TEST

UTF8
totalSupply
123 3000000000
Signer
P 0x0a%aa9771e347d6169786ecbe19db71119c9b7b6 G -

Gas Limit i Max Fee

(o)

_images/Tb-5.png
thereum St - [m]

File Edit View Application

an Contract Explorer Network
0x519dbfb8... test p Ropsten
+ N & < o] Gameltems.sol GLDToken.sol X <
+ testBasic 1 // contracts/GLDToken.sol
. 2 // SPDX-License-Identifier: MIT
» build - A
3 pragma solidity "0.8.0;
v contracts 4
Gameltem.sol 5 1import "@openzeppelin/contracts/token/ERC20/ERC20.s0l";
6
ErmE el 7 contract GLDToken is ERC20 {
RGIDTokensol I . = constructor(uint2s6 tntttalsupply) ERC20("Gold", "6L") { i
v deploys New File _mint(msg.sender, initialSupply);

dev.test 20211229_170 New Folder
rinkeby_20211229_185!
A ’ Open
¥ migrations
1.deploy.js Compile
config.json

. Open Containing Folder
package-lock.json

Open in Terminal

package.json
README.md Copy Path
truffle-config.js r
Rename
Delete
. & Ropsten B Transactions := ABI Storage A Solc (0.8.0) >

_images/Tb-4.png
B Ethereum Studio _ O

File Edit View Application

n Contract Explorer Network
v v v
0x519dbfb8... test & Ropsten

o] Gameltems.sol GLDToken.sol X <
1 // contracts/GLDToken.sol
2 // SPDX-License-Identifier: MIT
3 pragma solidity "0.8.0;
v contracts 4
Gameltem.sol 5 1import "@openzeppelin/contracts/token/ERC20/ERC20.s0l";
)
ErmE el 7 contract GLDToken is ERC20 {
RGioTokensol NN & & constructor(uint2s6 inttialsupply) ERC20("Gold", "6L0") { i
~ deploys J _mint(msg.sender, initialSupply);
. 10
dev.test 20211229_170607.json 11 } }
rinkeby_20211229_185825.json 12
¥ migrations
1.deploy.js
config.json
package-lock.json
package.json
README.md
truffle-config.js r
. & Ropsten B Transactions i= ABI Storage /¥ Solc(0.8.0) >_

_images/Tb-7.png
B Ethereum Studio

File Edit View Application

+ » e

& <>

v testBasic ;
v build 3
v contracts 4
Address.json 5
Context.json S
Counters.json 8
ERC1155.json 9
ERC165.json ?

2

ERC721.json 3
ERC721URIStorage.json '51
Gameltem.json 6
Gameltems.json 7
GLDToken.json 2
IERC1155.json 20
IERC1155MetadataURL.json 21
IERC1155Receiver.json g
IERC165.json 24
IERC20.json 25
IERC20Metadata.json ;S
IERC721.json 28
IERC721Metadata.json 29
IERC721Receiver.json ;?
Strings.json 32

» contracts 33
» deploys i
35

Bl Transactions

& Ropsten

i= ABI Storage

Gameltems.sol

GLDToken.sol

n Contract Explorer
0x519dbfb8... test
package.json ERC20.json X <+

"string",

"string",

"
H]

"address",

"address",

"
H]
"

“contractName": "ERC20",
"abi": [
{
"inputs": [
{
"internalType":
"name": "name_",
"type": "string"
1,
{
"internalType":
"name": "symbol_
"type": "string"
}
])
"stateMutability": "nonpayable",
"type": "constructor
}!
{
"anonymous": false,
"inputs": [
{
"indexed": true,
"internalType":
"name": "owner",
"type": "address
1,
{
"indexed": true,
"internalType":
"name": "spender
"type": "address
1,
{

Network
- p etwor
Ropsten

/¥ Solc (0.8.0)

P

_images/Tb-6.png
B Ethereum Studio - [m] X

File Edit View Application

n Contract Explorer Network
v v v
0x519dbfb8... test & Ropsten

+ N & < o] Gameltems.sol GLDToken.sol X <
~ testBasic 1 // contracts/GLDToken.sol
» build 2 // SPDX-License-Identifier: MIT
ul 3 pragma solidity "0.8.0;
v contracts 4
Gameltem.sol 5 1import "@openzeppelin/contracts/token/ERC20/ERC20.s0l";
6
Salc/ieiiesel 7 contract GLDToken is ERC20 {
A 8 constructor(uint256 initialSupply) ERC20("Gold", "GLD") {
~ deploys 9 _mint(msg.sender, initialSupply);
5 10
dev.test 20211229_170607.json 11 } }
rinkeby_20211229_185825.json 12
¥ migrations
1.deploy.js
config.json
package-lock.json
package.json
README.md
truffle-config.js
& Project im|

—

& Ropsten B Transactions i= ABI Storage /" Solc (0.8.0)

_images/Pr-7.png
B Ethereum Studio

File Edit View Application
n Contract Explorer Network
- -
h (None) 0x5b43a901... p Ropsten
Padit " o] Gameltems.sol GLDToken.sol % Gameltem.sol +

// contracts/GLDToken.sol
// SPDX-License-Identifier: MIT
pragma solidity "0.8.0;

testBasic
v contracts

Gameltem.sol
Gameltems.sol import "@openzeppelin/contracts/token/ERC20/ERC20.s0l";
contract GLDToken is ERC20 {
constructor(uint256 initialSupply) ERC20(“Gold", “GLD") {
_mint(msg.sender, initialSupply);

}

W ~NO U WN -

¥ migrations

©

1.deploy.js
config.json }
package-lock.json
package.json
README.md
truffle-config.js

. & Ropsten B Transactions := ABI Storage A Solc (0.8.0) >

E — F ot oy

_images/Qk-2.png
E Contract - ° Explorer - f' Network -
(None) 0x0a9aa977... Rinkeby

P HanYouyang

(No description)

£ Projects
v2

& HanYouyang/v2

test
& HanYouyang/test

testERC20
& HanYouyang/testERC20

HE Windows
FE"RELAME Windows,

. & Rinkeby B Transactions = ABI Storage

_images/Qk-20.png
» Project » Contract Network '-
B v & v
HanYouyang/tokenTransfer OxF30438E7... Ropsten _

Qhan X <+
c Q@ 0x0a9%9aa9771e347d6169786eche19db71119c9b7b6 w D

Account Information

® Balance 4.997ETH <[> Code (None)

Nonce 2

Transactions

TIME BLOCK TX HASH FROM TO VALUE GAS USED FEE

i.: Loading...

. & Ropsten H Transactions = ABI Storage

_images/Qk-18.png
Project
HanYouyang/tokenTransfer

9 Explorer - é Network - 'n '
han Ropsten _

0xf304...7259 x <+

(&l Q 0xF30438E789b361Eca®3B3C7AB8cB176e436C7259 w
® atlouance - b 8 Approval -+ b
Parameters Parameters Parameters
recipient owner Range
Q 0x0a9aa9771e347d6169786¢ (HEM) Q - Clear
amount spender Event Logs
123 1000 Q
BLOCK OWNER SPENDER VALUE
address address uint256
Gas (Estimate. Result
(no data)
Gas Limit (None)
0 30592
Tip

< 2500000000
Max Fee

@& 2500000016

Authorization

Signer

&P 0x0a%aa9771e347d616978... (HEM

Result

(None)

. & Ropsten H Transactions = ABI Storage

_images/Qk-19.png
Call a Contract x

- Parameters Tx Receipt Result

Hash 0xb524bce739042c9df02ed81c926641710bdd039a6466e824c50a8cf5aldflbaf

) Status ' CONFIRMED |

E Contract 0xF30438E789b361Eca03B3C7AB8cB176e436C7259
f(x) Function transfer
& ETH Sent 0.0 ETH
P Signer 0x0a9aa9771e347d6169786ecbel19db71119c9b7b6

Close

_images/Qk-5.png
B
=

® Rinkeby MRS v

IRBEEk !

BIEHEAZOAENSS

import using Secret Recovery Phrase

ntact MetaMask Support

_images/Qk-6.png
g Project » Contract Network ':

HanYouyang/tokenTransfer h (None) v n 4 Ropsten v _)
NEAEL] 0x0a9%a...b7b6 x +

(6l O 0x0a9aa9771e347d6169786eche19db71119c9b7b6 [~] E
Account Information

® Balance | 2.875ETH <[> Code (None)

Nonce 24

Transactions

TIME BLOCK TX HASH FROM TO VALUE GAS USED FEE

No Transactions Found

. & Ropsten B Transactions i= ABI Storage

_images/Qk-3.png
Create a New Project

Project name

tokenTransfeﬂ

Template

ERC20 Token

cancel -

_images/Qk-4.png
+ X & <P o
v tokenTransfer
~ contracts
Context.sol
o ERRQ0sl
IERC20.s0|
IERC20Metadata.sol
¥ migrations
1.deploy.js
v scripts
deploy.js
waffle-deploy.js
READMD.md
README.md
config.json
truffle-config.js

. & Rinkeby [Transactions = ABI Storage

Contract ° Explorer Network - \ﬂ Y

- -
(None) 0x0a9aa977... Rinkeby _

& README.md & ERC20.s0l % & READMD.md +

1 // SPDX-License-Identifier: MIT

2

3 pragma solidity 70.8.0;

4

5 import "./IERC20.sol";

6 import "./IERC20Metadata.sol";

7 import "./Context.sol";

8

S

10 * @dev Implementation of the {IERC20} interface.

11 *

12 * This implementation is agnostic to the way tokens are created. This means

13 * that a supply mechanism has to be added in a derived contract using {_mint}.

14 * For a generic mechanism see {ERC20PresetMinterPauser}.

15 *

16 * TIP: For a detailed writeup see our guide

17 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How

18 * to implement supply mechanisms].

19 *

20 * We have followed general OpenZeppelin guidelines: functions revert instead

21 * of returning “false' on failure. This behavior is nonetheless conventional

22 * and does not conflict with the expectations of ERC20 applications.

23 *

24 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.

25 * This allows applications to reconstruct the allowance for all accounts just

26 * by listening to said events. Other implementations of the EIP may not emit

;; : these events, as it isn't required by the specification. EE Windows A

HF"GE"LAE Windows, -
A Solc(0.8.0) >

_images/Qk-16.png
Deploy a Contract X

- Parameters Tx Receipt ABI

Hash 0x5c40ff3255c9a60ca8f48296af48f88a1108be393e8d42323a983806a892eel6
D) Status - CONFIRMED
B Contract 0xF30438E789b361Eca03B3C7AB8cB176e436C7259
B Contract Name ERC20
& ETH Sent 0.0 ETH
P Signer 0x0a9aa9771e347d6169786eche19db71119c9b7b6

Close

_images/Qk-17.png
Project
HanYouyang/tokenTransfer

han Ropsten _
0xf304...7259 x <+

c Q@ O0xF30438E789h361Eca®3B3C7AB8cB176e436C7259 w

Parameters Parameters Parameters
recipient owner Range
Q 0x0a9aa9771e347d6169786¢ (HEM) Q - Clear
amount spender Event Logs
123 1000 Q
BLOCK OWNER SPENDER VALUE
address address uint256
Gas Result
(no data)
Gas Limit (None)
6 30592
Tip

< 2500000000
Max Fee

@& 2500000016

Authorization

Signer

&P 0x0a%aa9771e347d616978... (HEM

Result

(None)

. & Ropsten H Transactions = ABI Storage

_images/Tb-12.png
B Ethereum Studio

File Edit View Application

Deploy Contract GLDToken x

Compiled contract (compiler output JSON)

GLDToken.json <~

Constructor Parameters
initialSupply
123 3000000000

Signer

& 0x9584bfbe913e75413d4c2fa1523b18cead5387a9

_images/Tb-13.png
B Ethereum Studio

File Edit View Application

Deploy Contract GLDToken x

Compiled contract (compiler output JSON)
GLDToken.json <~
Constructor Parameters

initialSupply
123 3000000000

Signer

& 0x9584bfbe913e75413d4c2fa1523b18cead5387a9 @0 -

Gas Limit

(o) e

_images/Tb-10.png
B Ethereum Studio

File Edit View Application

Deploy Contract GLDToken x

Compiled contract (compiler output JSON)

GLDToken.json <~

Constructor Parameters
initialSupply
123 3000000000

Signer

0x9584bfbe913e75413d4c2fal523b18cead5387a9 @ -
Gas Limit Tip Max Fee

(o) < e

_images/Tb-11.png
B Ethereum Studio

File Edit View Application

Deploy Contract GLDToken x

Compiled contract (compiler output JSON)

GLDToken.json <~

onstructor Parameters

Signer

0x9584bfbe913e75413d4c2fal523b18cead5387a9 @ -
Gas Limit Tip Max Fee

(o) < e

_images/Tb-16.png
B Ethereum Studio
File Edit View Application

Deploy a Contract

- Parameters Tx Receipt ABI

0x68d45b9f904517eaecc5335c80e3054bd106979ae0d11d758fe92455d7416948

Hash

D) Status

0xcAOFfc26473FCF835B83F71e74E03c008558df3a

Contract
GLDToken

Bi Contract Name
0.0 ETH

& ETH Sent
0x9584bfbe913e75413d4c2fa1523b18cead5387a9

Close

_images/Tb-14.png
B Ethereum Studio

File Edit View Application

Deploy Contract GLDToken x

Compiled contract (compiler output JSON)
GLDToken.json <~
Constructor Parameters

initialSupply
123 3000000000

Signer

& 0x9584bfbe913e75413d4c2fa1523b18cead5387a9 @0 -

Gas Limit Tip Max Fee

0 1222418 < 2500000000 @& 2500077376

_images/Tb-15.png
B Ethereum Studio _ O

File Edit View Application

n Contract Explorer Network
0x519dbfb8... test - @ Ropsten v
+ N o< o Gameltems.sol GLDToken.sol package.json ERC20.json Gameltem.sol GLDToken.json X <
v testBasic 1 : -
. 2 “contractName": "GLDToken",
v build Wb
3 abi": [
v contracts 4 {
Address.json 5 "U{IPUtS": [
.)
Context.json 7 "{nternalType": "uint256",
Counters.json 8 "name": "initialSupply",
ERC1155.json 9 "type": "uint256"
ERC165.json 2] }
3
ERC20.json 2 "stateMutability": "nonpayable",
ERC721.json 3 “type": "constructor”
. 4
ERC721URIStorage.json 5 I’
Gameltem.json 6 "anonymous": false,
Gameltems.json 7 "U{IPUtS": [
8
 GloTokenjon 0 +{ndexed": true,
IERC1155.json 20 "internalType": "address"”,
IERC1155MetadataURL.json 21 “name”: “owner",
IERC1155Receiver.json ;g } type': "address
IERC165.ison 24

IERC20.j| “: PENDING "indexed": true,
"internalType": "address",
IERC20N (Deploy (PUSHING) ©12/3017:01:54 | “name": "spender"”,
IERC721| GLDToken “type": "address"
IERC721| < pecent TRANSACTIONS ?
IERC721 @ transfer "indexed": false,
Strings.j: "internalType": "uint256",
v contracts “name”: “"value”,
@ Deploy "type": "uint256"

Gamelten

. & Ropsten | i: Transactions := ABI Storage A Solc(0.8.0) >_

_images/Qk-8.png
o i Account 1 .

wE s
a7 i
4 S5ETH >
Don't see your token?
Import tokens

Need help? Contact MetaMask Support

_images/Qk-9.png
s Project » Contract Network ':

B (B h WhI) T n p WD | . l
NEAEL] 0x0a9%a...b7b6 x +

(6l O 0x0a9aa9771e347d6169786eche19db71119c9b7b6) @ &

Account Information

@ Balance <[> Code (None)

Nonce 0

Transactions

TIME BLOCK TX HASH FROM TO VALUE GAS USED FEE

No Transactions Found

. & Ropsten B Transactions i= ABI Storage

_images/Qk-7.png
Ropsten Ethereum Faucet

ur testnet account address

0x0a9AA9771E347D6169786ECBE19db711 19C9b7bd

Bx-ses
Last deposits

0xf04f559bb382447f491235d7fd8523984aacat82a
0x302fcfec2c625d92296¢892f b21baadc7cc3c9

0x5172489c272a99b338414260030453a90c205297¢
0x86ec221ca3ellblelee49f9d69afa09c3d9db8eec

0x49fa7ef6a3b0cd9b8ad87d293775e5c8e026371e

This faucet drips 0.3 Ether every 10 seconds. You can register your account in our queue. Max queue size is currently 50. Serving from account
OxcDAOD6adCDOfICCeAB795FIb1F23a27ae643FETC (balance 0 ETH).

For inquiries, support or just to say thanks please reach out to us on Twitter

